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ABSTRACT 
 

This paper analysis a stochastic system with two different types of maintenance policies for the 
standby unit before getting it into operation. In Model1, the standby unit undergoes for maintenance with 
some probability when it is not operable at the failure of operative unit. While in Model2, server first 
inspects the standby unit to see the feasibility of its operation at the failure of operating unit. And, if 
standby unit is not found fit for operation, then the server starts its maintenance immediately. A single 
server is available instantly to provide the services like repairs of hardware, software components and 
preventive maintenance. The system works as new after repair. All the key reliability characteristics and 
other parameters of the system like mean time to system failure(MTSF), availability of the system, busy 
period of the server, the number of visits of the server and cost-benefit of the system are derived by 
RPGT. 
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Introduction 

A lot of research work has been carried out on reliability modeling of stochastic systems in view 
of their more natural existence in real life and may be more appropriate in practicein the past few 
decades. The researchers and scientists got success in some extent in improving the performance of the 
individual components that constitutes the system. And, the system with standby(s) has been observed 
as the effective one for providing better services for a long time. Therefore, several research papers on 
reliability measures of redundant systems have been written by the scholars including Malik and Kumar 
(2012), Bansalritu and Goel (2016) and Pradeepchaudhary et al. (2022).But in most of these studies it is 
assumed that unit in standby mode cannot deteriorate. Practically, this assumption seems to be 
unrealistic when a system has to work in varying environmental conditions. The standby unit may 
deteriorate due to many reasons such as non-functionality of the unit for a long time and by erosion. On 
the other hand, readiness of spares is of vital significance as these can be brought into operation at the 
failure of operating unit. Thus, in such a situation, maintenance of the standby unit becomes necessary 
before getting it into operation and this fact can be revealed by inspection. Recently, Malik and 
dhall(2014) evaluated performance measures of cold standby systems with maintenance and repair.  

 In view of such practical situations in mind, the aim of the present study is to analyze reliability 
models of a stochastic system of two identical units - one unit is initially operative and the other is kept as 
spare in cold standby. The unit has two modes – operative and failure. A single server is available 
immediately for conducting maintenance and other repair activities. The unit in standby mode may 
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deteriorate. Two different maintenance policies for the standby unit have been adopted before getting it 
into operation. In first policy, a model is developed in which standby unit undergoes for maintenance with 
some probability when it is not operable at the failure of operative unit. According to second policy, server 
first inspects the standby unit to see the feasibility of its operation at the failure of operating unit. And, if 
standby unit is not found fit for operation, then the server starts its maintenance immediately. However, 
only repair of the operative unit is done by the server. The unit works as new after maintenance and 
repair. The failure time of the unit follows negative exponential distribution where as the distributions of 
maintenance, inspection and repair times are taken as arbitrary with different probability density 
functions. All random variables are statistically independent. Switch devices are perfect. The expressions 
for several reliability measures such as transition probabilities, mean sojourn times, mean time to system 
failure (MTSF), availability, busy period of the server due to inspection and maintenance, busy period of 
the server due to repair, expected number of visits of the server and profit function have been derived in 
steady state using semi-Markov process and regenerative point technique. The behavior of some 
important performance measures have been examined graphically giving particular values to various 
parameters and costs. Profit comparison of the system models has been made to see the utility of the 
maintenance policies. 

 Notations 

O/Cs The unit is in operative/ cold standby mode 

𝜆 Constant failure rate of  the unit. 

a b⁄  The probability that standby  unit is found fit for operation/non-operable. 

𝑆𝑈𝑖/𝑆𝑈𝑚 The rate Standby unit under inspection/maintenance. 

g(t) G(t)⁄  pdf/cdf of repair  time . 

h(t) H(t))⁄  pdf/cdf of  inspection time of  the unit. 

m(t) M(t)⁄  pdf/cdf of  preventive maintenance  time. 

𝐹𝑈𝑟/𝐹𝑊𝑟 The unit is failed and under/waiting for repair continuously from previous state. 

𝐹𝑈𝑖/𝐹𝑈𝐼 The unit is failed and under/waiting for inspection continuously from previous state. 

𝑞𝑖𝑗(𝑡)/𝑄𝑖𝑗(𝑡) pdf/cdf of direct transition time from a regenerative state regenerative state(0,t]. 

𝑞𝑖𝑗.𝑘(𝑡)/𝑄𝑖𝑗.𝑘(𝑡) 

 

pdf/cdf of first passage time for a regenerative state Si to regenerative state Sj or to 
failed state Sj  visiting state Sk once in (0,t] 

𝑊𝑖(𝑡) Probability that the server is busy in state Si up to time without      
making transition to any other regenerative state or returning 
to the same via one or  more regenerative states. 

𝑀𝑖(𝑡) Probability that the system is up initially in state SiE is up 

at the time “t” without  visiting to any other regenerative state. 

𝜇𝑖 The mean sojourn time spent in state SiE before transition to any other state. 

𝜇𝑖
′  The total unconditional time spent in state before transition to any    

other regenerative  state given that the system entered regenerative  state i at time 
t=0 

𝑓𝑖 Fuzziness measure of the i-state 

𝑛𝑖 Expected time spend while doing a job, given that the system entered regenerative  
state i at time t=0 

𝑉𝑘𝑘 𝑉𝑘𝑘̅̅ ̅̅⁄  Transition probability factor of reachable state k of the 𝑘 𝑐𝑦𝑐𝑙𝑒 𝑘 𝑐𝑦𝑐𝑙𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅⁄  

𝑖
𝑟
→ 𝑗 Rth directed  simple path from i state to j state,r take +ve integral values from i state 

to j state 

𝜉
𝑠𝑓𝑓
→ 𝑖 A directed  simple failure free path from 𝜉 state to i state 

𝑚𝑖𝑗 Contribution to mean sojourn time in state Si when system transits   

 directly to state Sj(Si,SjE) 

𝜇𝑖 = ∑𝑚𝑖𝑗so that 𝑚𝑖𝑗 = ∫ 𝑡𝑑𝑄𝑖𝑗(𝑡) = −𝑞𝑖𝑗
∗, (0)   

 

Ⓢ/© Laplace Stieljes convolution/ Laplace convolution 

~/∗ Symbol for Laplace Stieljes transform (LST)/ Laplace transform (LT 

′ Symbol for derivative of the function 

cycles (𝑖, 𝑗, 𝑘) = (𝑖, 𝑗)(𝑗, 𝑘) 
 



54 International Journal of Innovations & Research Analysis (IJIRA)- April- June, 2023 

The possible transition states of the system models are shown respectively in figures 1 and 2. 

State Transition Diagrams 

 

Transition Probabilities and Mean Sojourn Times 

Simple probabilistic considerations yield the following expressions for the non-zero elements 




==
0

)()( dttqQp ijijij
as 

For Model 1 

𝑝01 = a, 𝑝02 = b, 𝑝10 = g∗(𝜆), 𝑝13 = 1 − g∗(𝜆), , 𝑝21 = m∗(0), 𝑝31 = g∗(0)⋯(1) 

It can be verified that 

𝑝01 + 𝑝02 = 1;𝑝10 + 𝑝13 = 1; 𝑝10 + 𝑝11.3 = 1; 𝑝21 = 1;𝑝31 = 1                       ⋯ (2) 

For Model 2 

𝑝01 = 1, 𝑝12 =
)0(*ah
, 𝑝13 =

)0(*bh
, 𝑝20 =

),(* g 𝑝24 =
),(*1 g− ,           

𝑝32 = m∗(0), 𝑝42 = g∗(0)⋯ (3) 

It can be verified that    

𝑝01 = 1; 𝑝12 + 𝑝13 = 1; 𝑝12 + 𝑝12.3 = 1; 𝑝20 + 𝑝24 = 1;𝑝20 + 𝑝22.4 = 1; 𝑝32 = 1; 

𝑝42 = 1                                                                                                                                 … (4) 

The mean sojourn times (μi) in the state Si are 

For Model 1 

𝜇0 = ∫ 𝑃(𝑇 > 𝑡)𝑑𝑡
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For Model 2 

𝜇0 = ∫ 𝑃(𝑇 > 𝑡)𝑑𝑡
∞

0

= m01 =
1

λ
, 𝜇1 = m12 +m13 = −h

∗′(0), 

b

λ 

S0 

aλ 

g(t

) 

S3 S2 

g(t) λ 

m(t) 

S1 

O               

cs 
 

 

cs 

 

O 

FUr 

 

FUR 

FWr 

FWr 

SUm 

S1 

g(t) 

 S0 

bh(t) 

S3 
S4 

S2 

λ 
m(t) 

ah(t) λ 

g(t) 

O               

cs 
 

 

cs 
 

FWr 

SUi 

 

 

O 

FUr 

 

FUR 

FWr 

FWR 

SUm 



Anju Dhall: Comparative Profit Analysis of Two Reliability Models Varying Maintenance Policies for..... 55 

𝜇2 = m20 +m24 =


)(1 *g−

, 

𝜇1
′ = m12 +m13 = −𝑎h

∗′(0) − 𝑏h
∗′(0)m∗(0) − 𝑏m∗′(0)h∗(0) 

𝜇2
′ = m20 +m22.4 =  

( ) ))0(
1

()(1 ** 
−− gg




⋯(6)  

Mean Time to System Failure 

The regenerative un-failed states to which the system can transit before entering any failed state are 
i=0,1,2 (model1) ;k1,k2=Nil i=0 (model2) 

the mean time to system failure (MTSF) is given by 

MTSF = [∑ {
{𝑝𝑟(𝜉

𝑠𝑟(𝑠𝑓𝑓)
→    𝑖)} . 𝜇𝑖

∏ {𝑘1≠𝜉 1 − 𝑉(𝑘1, 𝑘1)}
}

𝑖,𝑠𝑟

] ÷ [1 −∑ {
{𝑝𝑟(𝜉

𝑠𝑟(𝑠𝑓𝑓)
→    𝜉)}

∏ {𝑘2≠𝜉 1 − 𝑉(𝑘2, 𝑘2)}
}

𝑠𝑟

] 

=(0,1,0)µ0+(0,1)µ1÷ 1-(0,1,0)(For Model 1)                      

=µ0+p01µ1÷ 1-p01p10 

=N1÷D1 

MTSF=(0,0)µ0(for model2) 

=µ0 

=N2÷D2 

For Model1 

𝑀𝑇𝑆𝐹 = (0,1,0)µ0 + (0,1) µ1  ÷ 1 − (0,1,0)) 

= µ
0
+ p01µ1  ÷ 1 − p01p10 

=
𝑁1
𝐷1

 

for  Model 2 

𝑀𝑇𝑆𝐹 = {(0,1,2,0) + (0,1,3,2,0}) µ 0 ÷ (1 − 0) 

= µ0 =
𝑁2
𝐷2

 

Steady State Availability  

The regenerative state at which system is available are j=0,1,(for model1)and j=0,2(for model2) 

𝐴𝜉 = [∑ {
{𝑝𝑟(𝜉

𝑠𝑟
→𝑗)} 𝑓𝑗 .µ𝑗

∏ {𝑘1≠𝜉 1 − 𝑉(𝑘1, 𝑘1)}
}

𝑗,𝑠𝑟

] ÷ [∑ {
{𝑝𝑟(𝜉

𝑠𝑟
→𝑖)} .µ𝑖

1

∏ {𝑘2≠𝜉 1 − 𝑉(𝑘2, 𝑘2)}
}

𝑖,𝑠𝑟

] 

A1 = (1,0)f0μ0 + {(1,0,1) + (1,0,2,1) + (1,3,1)}f1μ1 ÷ [(1,0)μ0
, + {(1,0,1) + (1,0,2,1) + (1,3,1)}μ1

, + (1,0,2)μ2
,  

A2 = (2,0)f0μ0 + {(2,0,1,2) + (2,0,1,3,2)}f2μ2 ÷ [(2,0)μ0
, + {(2,0,1)}μ1

, + {(2,1,0,2) + (2,0,1,3,2)}μ2
,

 

𝐴𝑖 = 𝑁𝑖0 ÷ 𝐷𝑖0,𝑖 = 1,2 

𝑁10 = 𝑝10𝜇0 + 𝜇1,𝐷10 = 𝑝10𝜇0 + 𝜇1
′ + 𝑝02𝑝10𝜇2   (For Model1) 

𝑁20 = 𝑝20𝜇0 + 𝜇2,𝐷20 = 𝑝20 𝜇0 + 𝑝20𝜇1
′ + 𝜇2

′  (For Model2) 

Busy Period of the Server by Inspection /Maintenance/repair 

The regenerative state where the server is busy while doing maintenance/inspection/repairare 
j=1,2(for model1)j=1,2,3(for model2) 
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𝐵𝜉 = [∑ {
{𝑝𝑟(𝜉

𝑠𝑟
→𝑗)} 𝜂𝑗

∏ {𝑘1≠𝜉 1 − 𝑉(𝑘1, 𝑘1)}
}

𝑗,𝑠𝑟

] ÷ [∑ {
{𝑝𝑟(𝜉

𝑠𝑟
→𝑖)} .µ𝑖

1

∏ {𝑘2≠𝜉 1 − 𝑉(𝑘2, 𝑘2)}
}

𝑖,𝑠𝑟

] 

𝐵1 = (1,0,1)𝜂1 + (1,0,2)𝜂2 ÷ 𝐷10 

𝐵2 = (2,0,1)𝜂1 + {(2,0,1,2) + (2,0,1,3,2)}𝜂2 ÷ 𝐷20 

Bi = Ni2 ÷ Di0,i = 1,2 

𝑁12 = 𝑝10𝑝01𝜂1 + 𝑝10𝑝02𝜂2 

𝑁22 = 𝑝20𝜂1 + 𝜂2 

𝐷10, 𝐷20are already defined. 

Expected Number of Visits of the Server 

The regenerative state where  the server visits(afresh) for the 
maintenance/inspection/repairsare j=1(for model1)j=2(for model2) 

𝑉𝜉 = [∑ {
{𝑝𝑟(𝜉

𝑠𝑟
→𝑗)}

∏ {𝑘1≠𝜉 1 − 𝑉(𝑘1, 𝑘1)}
}

𝑗,𝑠𝑟

] ÷ [∑ {
{𝑝𝑟(𝜉

𝑠𝑟
→𝑖)} .µ

𝑖
1

∏ {𝑘2≠𝜉 1 − 𝑉(𝑘2, 𝑘2)}
}

𝑖,𝑠𝑟

] 

𝑉𝑖 = 𝑁𝑖2 ÷ 𝐷𝑖0    𝑖 = 1,2 

Where 

𝑁12 = 𝑝10 

𝑁22 = 𝑝20 

𝐷10, 𝐷20are already defined. 

Profit Analysis 

Pi = K0Ai − K1Bi
r − K2Vi          (𝑖 = 1,2) 

Where 

K0=Revenue per unit up-time of the system. 

K1=Cost per unit time for which server is busy due to maintenance/inspection/repair. 

K2= Cost per unit time visit of the server. 

Particular Case 

For the particular case g(𝑡) = 𝛼𝑒−𝛼𝑡, ℎ(𝑡) = 𝛽𝑒−𝛽𝑡 ,  m(𝑡) = 𝛾𝑒−𝛾𝑡 

The following results are obtained: 

For Model 1 

𝑁1 =
𝛼 + 𝜆 + 𝑎

𝜆(𝛼 + 𝜆)
𝐷1 =

(𝛼 + 𝜆) − 𝑎𝛼

(𝛼 + 𝜆)
𝑁10 =

1

𝜆
 

𝑁11 =
𝛼

𝛼 + 𝜆
.
𝑏

𝛾
𝑁12 =

1

𝛼
𝑁13 =

𝛼

𝛼 + 𝜆
 

𝐷10 =
𝛼

𝛼 + 𝜆
[
1

𝜆
+
𝑏

𝛾
] +

1

𝛼
 

For Model 2 

𝑁2 = 1,            𝐷2 = 𝜆,                                 𝑁20 =
1

𝜆
 

𝑁21 =
𝛼

𝛼 + 𝜆
[
1

𝛽
+

𝑏𝛽

𝛾(𝛾 + 𝛽)
],                   𝑁22 =

1 

𝛼 
,                       𝑁23 =

𝛼

𝛼 + 𝜆
 

 

𝐷20 =
𝛼

𝛼 + 𝜆
[
1

𝜆
+
1

𝛽
+
𝑏

𝛾
] +

1

𝛼
 

Comparative Analysis  

There is a sudden decline in mean time to system failure (MTSF) with the increase of failure rate 
(λ) for other fixed parametric values as shown in figures 3 and 4. Figures 5,6 and 7,8 indicate that profit 
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of the system models go on decreasing as failure rate (λ) increases. However, system becomes more 
profitable when repair and maintenance rates increase provided unit has more chances of deterioration in 
standby mode. Also, it is interesting to note that system model 1 has more values of MTSF and profit. 
The profit comparison of the models is shown in figure 9. Hence, we can say that maintenance policy 2nd 
should not be adopted in case of a two-unit cold standby system.  

 

Fig. 3: Model1 

 

Fig.4: Model2 
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Fig.6 

 

0.7

0.75

0.8

0.85

0.9

0.95

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
v

a
il

a
b

il
it

y

Failure Rate(λ)

Availability Vs Failure Rate(λ)

α=2.1,ϒ=3.1,β=5,a=0.6,b=0.4

α=3

ϒ=4

β=6



Anju Dhall: Comparative Profit Analysis of Two Reliability Models Varying Maintenance Policies for..... 59 

 

Fig.7: Model1 

 

Fig.8: Model 2 
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Fig.9: Profit Difference 
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