International Journal of Education, Modern Management, Applied Science & Social Science (IJEMMASSS) ISSN : 2581-9925, Impact Factor: 6.340, Volume 03, No. 03(III), July - September, 2021, pp. 255-261

MATHEMATICAL AND GRAPHICAL STUDY OF MEAN QUEUE LENGTH OF BISERIAL FEEDBACK QUEUING SYSTEM HAVING FACILITY OF THREE PARALLEL SERVERS CONNECTED WITH A COMMON FOURTH SERVER

Dr. Santosh Kumari*

ABSTRACT

The present paper deals with the mathematical and graphical study of mean queue length of a queueing system of a developed queuing model in which three servers are connected in parallel in tri-cum biserial way with a common server. The arrival and service pattern are assumed to follow the Poisson process. Variation in Mean queue length of the system have been studied mathematically and graphically by changing the values of different queueing characteristics keeping the remaining variables constant.

Keywords: Four Servers, Mathematical and Graphical Study, Mean Queue Length, Queueing Characteristics.

Introduction

Feedback queues are those queues which are formed due to rejoining of the queuing system by the unsatisfied customers who have already availed the service. In real life feedback queues are observed generally in manufacturing concerns, offices, in hospitals etc. A large number of researchers have done a lot of work on queuing models considering various aspects such as bulk service, impatient customers, cyclic queues, batch arrivals, reneging, blocking. Study on queuing models considering the concept of feedback has also been done by a large number of researchers. Jacksons (1954) was the first who investigated the various characteristics of a queue system encompassing phase type service. Maggu (1970) emphasized on phase type service queues with two servers behavior of a queuing model. Singh *et al (*2005*)* used parallel biserial queues to examine the transient behavior of a queuing network.

The state characteristics of a queue model having two subsystems with bi-serial channels connected with a common channel has been investigated by Kumar et al (2006). Gupta et al (2007) presented an extensive parametric study to explore the queuing model consist of biserial and parallel channels associated with a common server. Gupta et al (2012) presented a detailed investigation on the linkage of a flowshop scheduling model with a parallel biserial queue network. This work has been further explored by Seema et al to optimize total flow time, waiting time and service time.

Kumar and Taneja (2019) also studied the many feedback queuing models. They studied the feedback queuing models with the repitition of service once and more than once but finite times. Aggarwl and singh (2018) deal with the investigation of various characteristics queue length, variance, average waiting time and probabilities of a developed queuing model in which three servers are connected in parallel in tri-cum biserial way with a common server. They did not find the queue length at each of the server.

Santosh Kumari (2021) found the expected queue length at each of the four server and the whole biserial feedback queuing system having facility that the three parallel servers connected with a common fourth server by using the value of generating function of the model developed by Aggarwal and Singh (2018).

In the present paper, I have discussed the variation in mean queue length of the system with the help of the tables and graphs by putting different possible values of different variables in the formula of expected queue length of the whole queueing system solved by me i.e. Santosh Kumari (2021). Arbitrary different possible values of queueing characteristics have been put in the formula of expected queue length derived by me by keeping the other variables constant.

[•] Associate Professor, Department of Mathematics, Gaur Brahman Degree College, Rohtak, Haryana, India.

256 International Journal of Education, Modern Management, Applied Science & Social Science (IJEMMASSS) - July - September, 2021

Notations

In the present work, a queue model consist of three servers (S_a, S_b and S_c) are connected in parallel in tri-cum biserial way which are further connected to a common server S_d. Let Lq₁, Lq₂, Lq₃ and Lq₄ be the queues associated with servers S_a, S_b, S_c and S_d respectively. Let n_a, n_b, and n_c be the number of customers at any time t coming at S_a, S_b and S_c from outside with mean arrival rate λ_{a} , λ_{b} , and λ_{c} respectively. Also, n_d be the no. of customers at server S_d at any time t.

- λ_a : Mean Arrival rate at 1st server (S_a)
- λ_b : Mean Arrival rate at 2nd server (S_b)
- λ_{c} : Mean Arrival rate at 3rd server (S_c)
- µa: service rate of 1st server (Sa)
- $\mu_{b:}$ service rate of 2^{nd} server (S_b)
- $\mu_{\text{c:}}$ service rate of 3rd server (Sc)
- $\mu_{d:}$ service rate of 4^{th} server (S_d)

 $\mathsf{P}_{ij}\!\!:$ the probability of customer going from i^{th} to j^{th} server.

Pi: the probability of customer going from ith to outside the whole queueing system

L_q : denote the Mean Queue Length of the system.

The Expected queue length of the whole system by Santosh Kumari (2021) is given by:

$$\begin{split} & L_{q} = \mu_{a} \left\{ \frac{\mu_{a} f_{1} - \mu_{b} P_{ba} f_{2} - \mu_{c} P_{ca} f_{3}}{(-\lambda_{a} + \mu_{a} - \mu_{b} P_{ba} - \mu_{c} P_{ca})^{2}} - \frac{f_{1}}{(-\lambda_{a} + \mu_{a} - \mu_{b} P_{ba} - \mu_{c} P_{ca})} \right\} \\ & + \mu_{b} \left\{ \frac{-\mu_{a} f_{1} P_{ab} + \mu_{b} f_{2} - \mu_{c} f_{3} P_{cb}}{(-\lambda_{b} - \mu_{a} P_{ab} + \mu_{b} - \mu_{c} P_{cb})^{2}} - \frac{f_{2}}{(-\lambda_{b} - \mu_{a} P_{ab} + \mu_{b} - \mu_{c} P_{cb})} \right\} \\ & + \mu_{c} \left\{ \frac{-\mu_{a} P_{ac} f_{1} - \mu_{b} P_{bc} f_{2} + \mu_{c} f_{3}}{(-\lambda_{c} - \mu_{a} P_{ac} - \mu_{b} P_{bc} + \mu_{c})^{2}} - \frac{f_{3}}{(-\lambda_{c} - \mu_{a} P_{ac} - \mu_{b} P_{bc} + \mu_{c})} \right\} + \\ & \mu_{d} \left\{ \frac{-\mu_{a} P_{ad} f_{1} - \mu_{b} P_{bd} f_{2} - \mu_{c} f_{3} P_{cd} + \mu_{d} f_{4}}{(-\mu_{a} P_{ad} - \mu_{b} P_{bd} - \mu_{c} P_{cd} + \mu_{d})^{2}} - \frac{f_{4}}{(-\mu_{a} P_{ad} - \mu_{b} P_{bd} - \mu_{c} P_{cd} + \mu_{d})} \right\} \end{split}$$

Numerical Results and Discussion

• Behaviour of mean queue length (L_q) of the system with respect to mean arrival rate of customers at first server (λ a) for different values of mean arrival rate of customers at second server (λ _b) is depicted in Table 1 and in Fig. 1 keeping the values of other parameters as fixed.

Т	a	h	le	1
	а	ν	16	

λc =15 , µa=11, µb=12, µc=13, µd=30, pab=0.1, pac=0.3, pad=0.6, pba=0.2, pbc=0.4,				
p _{bd} =0.4,p _{ca} =0.3, p _{cb} =0.5, p _{cd} =0.2				
	λ _b =12	λ _b =13	λ _b =14	
λa	Lq	Lq	Lq	
10	52.50113	53.53577	54.55742	
11	58.63082	59.64303	60.64256	
12	64.63822	65.63729	66.62402	
13	70.56209	71.553	72.53187	
14	76.4266	77.41222	78.38612	
15	82.24752	83.2296	84.20029	
16	88.03553	89.0152	89.98381	
17	93.79808	94.77611	95.74339	
18	99.54056	100.5175	101.4839	
19	105.2669	106.2431	107.2091	

Dr. Santosh Kumari: Mathematical and Graphical Study of Mean Queue Length of Biserial...

Fig. 1

Following can be interpreted from Table 1 and Fig. 1.

- Mean queue length of the system L_q get increased with the increase in λ_a .
- Mean queue length of the system L_q increases with the increase in λ_b .
- Behaviour of mean queue length (Lq) of the system with respect to mean arrival rate of customers at first server (λa) for different values of mean service rate of first server (μ_a) is depicted in Table 2 and in Fig. 2 keeping the values of other parameters as fixed.

Table 2					
λ_b =12, λ c=15, μ_b =12, μ_c =13, μ_d =30, p_{ab} =0.1, p_{ac} =0.3, p_{ad} =0.6, p_{ba} =0.2, p_{bc} =0.4,					
	p _{bd} =0.4,p _{ca} =0.3, p _{cb} =0.5, p _{cd} =0.2				
	μa=11	μa =12	μa =15		
λa	Lq	Lq	Lq		
10	52.50113	53.01611	41.54914		
11	58.63082	59.92439	58.78593		
12	64.63822	66.59928	70.42974		
13	70.56209	73.1267	80.33576		
14	76.4266	79.5554	89.47832		
15	82.24752	85.91491	98.21809		
16	88.03553	92.2241	106.7195		
17	93.79808	98.49559	115.0682		
18	99.54056	104.7381	123.3131		
19	105 2669	110 9578	131 4845		

International Journal of Education, Modern Management, Applied Science & Social Science (IJEMMASSS) - July - September, 2021

Following can be interpreted from Table 2 and Fig. 2.

- Mean queue length of the system L_q get increased with the increase in λ_a.
- Mean queue length of the system L_q initially increases with the increase in μa but decreases for greater than μa=12.and increases continuously with the increase in service rate μa after λ_a =11.
- Behaviour of mean queue length (L_q) of the system with respect to mean arrival rate of customers at first server (λa) for different values of mean service rate of fourth server (μd) is depicted in Table 3 and in Fig. 3 keeping the values of other parameters as fixed.

	Table 3 λ _b =12, λc=15 , μ _a =11, μ _b =12, μ _c =13, p _{ab} =0.1, p _{ac} =0.3, p _{ad} =0.6,p _{ba} =0.2, p _{bc} =0.4, p _{bd} =0.4,p _{ca} =0.3, p _{cb} =0.5, p _{cd} =0.2			
λ _b =1				
	μ _d =11	μ _d =12	μ _d =15	
λα	Lq	Lq	Lq	
10	463.9251	1147.129	5877.708	
11	492.0317	1218.745	6288.538	
12	520.0161	1290.239	6699.245	
13	547.917	1361.65	7109.869	
14	575.7585	1433.001	7520.433	
15	603.5565	1504.309	7930.954	
16	631.3215	1575.584	8341.442	
17	659.061	1646.833	8751.905	
18	686.7805	1718.062	9162.347	
19	714.4839	1789.275	9572.774	

Fig.3

From Table 3 and Fig. 3 we interpret that Mean queue length of the system L_q increases with the increase in mean arrival rate of first server (λ_a) as well as increase in service rate of fourth server (μ_d).

Behaviour of mean queue length (L_q) of the system with respect to mean arrival rate of customers at second server (λ_b) for different values of mean service rate of second server (μ_b) is depicted in Table 4 and in Fig. 4 keeping the values of other parameters as fixed.

258

	Table 4			
λa=10, λc=15 , μa=11, μb=12, μc=13, pab=0.1, pac=0.3, pad=0.6,pba=0.2, pbc=0.4, pbd=0.4,pca=0.3, pcb=0.5, pcd=0.2				
١.	μ _b =10	μ _b =12	μ _b =13	
Λb	Lq	Lq	Lq	
10	812.1436	444.0722	348.2563	
11	829.8108	453.9995	356.0915	
12	847.4623	463.9251	363.9753	
13	865.1001	473.8393	371.8645	
14	882.7265	483.7406	379.7459	
15	900.3433	493.6295	387.616	
16	917.952	503.5076	395.4748	
17	935.554	513.3763	403.323	
18	953.1502	523.2369	411.1621	
19	970.7416	533.0906	418.9931	

Fig. 4

Following can be interpreted from Table 4 and Fig. 4.

- Mean queue length of the system L_q increases with the increase in λ_a.
- Mean queue length of the system L_q decreases with the increase in service rate of second server (µ_b).
- Behaviour of mean queue length (L_q) of the system with respect to probability of customers from first server to second server (p_{ab}) for different values of mean arrival rate of second server (λ_b) is depicted in Table 5 and in Fig. 5 keeping the values of other parameters as fixed.

λa =10, λc =15, μa =11, μb =12, μc =13, μd =11, $p b a$ =0.2, $p b c$ =0.4, $p b d$ =0.4, $p c a$ =0.3, $p c b$ =0.5, $p c d$ =0.2			
Раь	λ _b =10	λ _b =15	λ _b =18
	Lq	Lq	Lq
0.25	959.4051	1020.595	1057.924
0.3	1004.375	1069.014	1108.307
0.35	1054.089	1122.733	1164.334
0.4	1109.211	1182.492	1226.794
0.43	1173.796	1252.331	1299.74
0.5	1238.868	1323.73	1374.855
0.53	1318.257	1409.965	1465.168
0.58	1403.851	1503.779	1563.875
0.63	1500.247	1609.748	1675.556
0.69	1608.196	1729.315	1802.068

Table 5

The Following can be interpreted from Table 5 and Fig. 5

Mean queue length of the system L_q increases with the increase in p_{ab} as well as increase in mean arrival rate of second server (λ_b).

Behaviour of mean queue length (Lq) of the system with respect to probability of customers visiting from third server to fourth server (p_{cd}) for different values of mean arrival rate of second server (μd) is depicted in Table 6 and in Fig. 6 keeping the values of other parameters as fixed.

λa=10, , λ _b =12,	$\lambda a=10, \ \lambda b=12, \ \lambda c=15, \ \mu a=11, \ \mu b=12, \ \mu c=13, \ p_{ab}=0.3, \ p_{ac}=0.2, \ p_{ad}=0.5, \ p_{ba}=0.2, \ p_{bc}=0.35, \ p_{bd}=0.45$			
n .	μ _d =2	μ _d =5	μ _d =7	
Pcd	Lq	Lq	L _q	
0.15	4.037182	23.91505	63.16923	
0.155	5.291838	25.6459	65.75837	
0.16	6.472284	27.2593	68.12119	
0.165	7.62504	28.80128	70.30615	
0.17	8.42699	29.78561	71.40017	
0.175	10.01836	31.83828	74.31519	
0.18	10.9128	32.84408	75.27864	
0.185	12.37047	34.51575	77.20326	
0.19	14.11195	36.4195	79.25233	
0.195	16.80026	39.26511	82.27129	

Following can be interpreted from Table 6 and Fig. 6

Mean queue length of the system L_q increases with the increase in probability $p_{cd.}$ as well as the increase in mean service rate of fourth server $(\mu_d$).

260

Dr. Santosh Kumari: Mathematical and Graphical Study of Mean Queue Length of Biserial...

References

- 1. Jackson, R.R.P. (1954). Queuing systems with phase-type service. Operational Research Quarterly, 5, 109-120.
- 2. Maggu, P.L. (1970). Phase type service queues with two servers in biseries. Journal of Operational Research Society of Japan, 13(1), 1-6.
- 3. Singh, T. P., Vinod, K., Rajinder, K., (2005). On transient behaviour of a queuing network with parallel biserial queues, JMASS, 1(2),68-75.
- 4. Gupta D., Singh, T.P., Rajinder, K., (2007). Analysis of a network queue model comprised of biserial and parallel channel linked with a common server. Ultra Science, 19(2) M, 407-418.
- 5. Kumar, V., Singh, T. P., and Kumar, R. (2006). Steady state behaviour of a queue model comprised of two subsystems with biserial channels linked with a common channel. Ref Des Era JSM, 1(2), 135-152.
- 6. Gupta, D., Sharma, S. and Sharma, S. (2012). On linkage of a flowshop scheduling model including job block criteria with a parallel biserial queue network, Computer Engineering, and Intelligent System, 3(2), 17-28.
- Sachin Kumar Agrawal and B. K. Singh (2018). Computation of various queue characteristics using tri-cum biserial queuing model connected with a common server, International Journal of Mathematics Trends and Technology, 56 (1), 81-90.
- 8. Surender Kumar and Gulshan Taneja (2019). Mathematical Modelling of Queue Networks for Some Feedback and Booking Systems, Ph. D. Thesis, M.D.U. Rohtak.
- Santosh Kumari (2021). Analytic Study of Expected Queue Length of Biserial Feedback Queuing System Having Facility That the Three Parallel Servers Connected with a Common Fourth Server. Shodh Sanchar, 11(41), 92-99.

