A MATHEMATICAL AND GRAPHICAL INVESTIGATION INTO A FEEDBACK QUEUEING MODEL WITH THREE SERVERS CONNECTED TO A COMMON FOURTH SERVER AND A ONCE-REVISIT FEATURE

Surender Kumar*
Vinod Bhatia*
Nidhi Sharma**

Abstract

The present paper deals with the study of mathematical and graphical study of mean queue length of the system. The Queuing system has four servers for the service of customers. A customer, after getting service from first server goes to second or third or fourth server for service depending upon the need of service. She/he is allowed to revisit but not more than once. The arrival and service pattern are assumed to follow the Poisson process. The Mean Queue Length of the system has been calculated by solving the steady state equations by using the generating function technique.

Keywords: Feedback, Queuing System, Poisson Process, Four Server, Mean Queue Length.

Introduction

The literature on queuing theory offers many reports of extensive effort. Many scholars have examined queuing models with different service types, multiclass services, or multi-servers, including [1, $3,4,6,14]$. Additionally, it's possible that a customer will need to repeatedly join several service lines before a server completes their task to their satisfaction. These circumstances, which can be seen in manufacturing, healthcare, and other settings, gave rise to feedback in queuing systems and, as a result, enhanced the literature on queuing theory by introducing the idea of researching queuing systems with feedback [2, 5, 7-13, 15]. A hierarchical feedback queuing approach with three servers was also covered by Kumar and Taneja [12]. Kamal et al. [16] worked on the feedback queueing model with four servers, one linked centrally with the other three servers having revisit atmost once but did not discussed the variations in the mean queue length with respect to the other parameters. For this reason, this article is being written. The present paper deals with the study of increase/ decrease of the mean queue length with respect to different queueing parameters.

Notation

λ : mean arrival rate at $1^{\text {st }}$ server $\left(\mathrm{S}_{1}\right)$
$\mu_{1}: \quad$ mean service rate of $1^{\text {st }}$ server $\left(\mathrm{S}_{1}\right)$
μ_{2} : mean service rate of $2^{\text {nd }}$ server.
μ_{3} : mean service rate of $3^{\text {rd }}$ server.
μ_{4} : mean service rate of $4^{\text {th }}$ server
$a_{1}: \quad$ the probability of customer leaving $1^{\text {st }}$ server $1^{\text {sttime. }}$
a_{2} : \quad the probability of customer leaving $1^{\text {st }}$ server $2^{\text {nd }}$ time.

[^0]b_{1} : the probability of customer leaving $2^{\text {nd }}$ server $1^{\text {sttime. }}$
b_{2} : the probability of customer leaving $2^{\text {nd }}$ server $2^{\text {nd }}$ time.
$C_{1}=C_{1}$: the probability of customer leaving $3^{\text {rd }}$ server $1^{\text {st }}$ time.
$\mathrm{C}_{2}=\mathrm{C}_{2}$: the probability of customer leaving $3^{\text {rd }}$ server $2^{\text {nd }}$ time.
d_{1} : \quad the probability of customer leaving $4^{\text {th }}$ server $1^{\text {sttime }}$
d_{2} : the probability of customer leaving $4^{\text {th }}$ server $2^{\text {nd }}$ time
q_{12} : \quad the probability of customer going from $1^{\text {st }}$ to $2^{\text {nd }}$ server $1^{\text {st }}$ time.
q_{12} : \quad the probability of customer going from $1^{\text {st }}$ to $2^{\text {nd }}$ server $2^{\text {nd }}$ time.
q_{2} : \quad the probability of exit of customer from $2^{\text {nd }}$ server $1^{\text {st }}$ time.
q_{23} : \quad the probability of customer going from $2^{\text {nd }}$ to $3^{\text {rd }}$ server $1^{\text {st }}$ time.
q_{21} : \quad the probability of customer going from $2^{\text {nd }}$ to $1^{\text {st }}$ server $1^{\text {st }}$ time.
q^{\prime} : \quad the probability of exit of customer from $2^{\text {nd }}$ server $2^{\text {nd }}$ time.
q_{23} : \quad the probability of customer going from $2^{\text {nd }}$ to $3^{\text {rd }}$ server $2^{\text {nd }}$ time.
$q^{\prime} 21$: the probability of customer going from $2^{\text {nd }}$ to $1^{\text {st }}$ server $2^{\text {nd }}$ time.
q_{3} : \quad the probability of exit of customer from $3^{\text {rd }}$ server $1^{\text {st }}$ time.
q_{31} : \quad the probability of customer going from $3^{\text {rd }}$ to $1^{\text {st }}$ server $1^{\text {st }}$ time.
q_{32} : the probability of customer going from $3^{\text {rd }}$ to $2^{\text {nd }}$ server $1^{\text {st }}$ time.
q_{34} : the probability of customer going from $3^{\text {rd }}$ to $4^{\text {th }}$ server $1^{\text {st }}$ time
q_{3} : \quad the probability of exit of customer from $3^{\text {rd }}$ server $2^{\text {nd }}$ time.
$q^{\prime}{ }_{31}: \quad$ the probability of customer going from $3^{\text {rd }}$ to $1^{\text {st }}$ server $2^{\text {nd }}$ time.
q' 32 : the probability of customer going from $3^{\text {rd }}$ to $2^{\text {nd }}$ server $2^{\text {nd }}$ time.
q34: the probability of customer going from $3^{\text {rd }}$ to $4^{\text {th }}$ server $2^{\text {nd }}$ time.
q4: the probability of exit of customer from $4^{\text {th }}$ server $1^{\text {st }}$ time.
q4: the probability of exit of customer from $4^{\text {th }}$ server $2^{\text {nd }}$ time.
q_{41} : the probability of exit of customer from $4^{\text {th }}$ to $1^{\text {st }}$ server $1^{\text {st }}$ time.
q42: the probability of customer going from $4^{\text {th }}$ to $2^{\text {nd }}$ server $1^{\text {st }}$ time.
q43: the probability of customer going from $4^{\text {th }}$ to $3^{\text {rd }}$ server $1^{\text {st }}$ time.
q'42: the probability of customer going from $4^{\text {th }}$ to $2^{\text {nd }}$ server $2^{\text {nd }}$ time.
$q^{\prime}{ }_{43}$: the probability of customer going from $4^{\text {th }}$ to $3^{\text {rd }}$ server $2^{\text {nd }}$ time.

Formulation of the Problem

The queue network consists of four service channels $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$ and $4^{\text {th }}$; whereas $2^{\text {nd }}, 3^{\text {rd }}$ and $4^{\text {th }}$ are linked centrally with the $1^{\text {st }}$ server. It is assumed that customer arrive at $1^{\text {st }}$ server from outside the system according to a Poisson process with mean rate λ and then goes to $2^{\text {nd }}, 3^{\text {rd }}$ or $4^{\text {th }}$ servers for required services. After getting service at first server $1^{\text {st }}$ time, a customer either moves to the $2^{\text {nd }}, 3^{\text {rd }}$ or $4^{\text {th }}$ server such that $\mathrm{q}_{12}+\mathrm{q}_{13}+\mathrm{q}_{14=1}$.

If the customer goes to second server after getting service $1^{\text {st }}$ time from the first server then, s / he either quits or moves back to the first server or to the third server or to the $4^{\text {th }}$ server such that $\mathrm{q}_{2}+\mathrm{q}_{21}+\mathrm{q}_{23}+\mathrm{q}_{24}=1$. Similarly, if the customer moves to third server from first server $1^{\text {st }}$ time then s / he either exits or revisits to the other servers and hence $q_{3}+q_{31}+q_{32}+q_{34}=1$.

From the fourth server, s/he may quit the system or move back to the lower order servers such that $\mathrm{q}_{4}+\mathrm{q}_{41}+\mathrm{q}_{42}+\mathrm{q}_{43}=1$. similarly, equations for revisit of the customer to any server can be written here. Let $Q_{n_{1}, n_{2}, n_{3}, n_{4}}$ is the probability of having $n_{1}, n_{2}, n_{3}, n_{4}$ customers at server $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$ and $4^{\text {th }}$ at any time t.

The steady-state equations for different values of $\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}$, and n_{4} are given by:

$$
\begin{aligned}
& \left(\lambda+\mu_{1}+\mu_{2}+\mu_{3}+\mu_{4}\right) Q_{n_{1}, n_{2}, n_{3}, n_{4}}=\lambda Q_{n_{1}-1, n_{2}, n_{3}, n_{4}}+\mu_{1}\left(a_{1} q_{12}+a_{2} q_{12}^{\prime}\right) Q_{n_{1}+1, n_{2}-1, n_{3}, n_{4}} \\
& +\mu_{1}\left(\mathrm{a}_{14} q_{14}+\mathrm{a}_{2} q_{14}^{\prime}\right) Q_{n_{1}+1, n_{2}, n_{3}, n_{4}-1}+\mu_{1}\left(\mathrm{a}_{1} \mathrm{q}_{13}+\mathrm{a}_{2} q_{13}^{\prime}\right) Q_{n_{1}+1, n_{2}, n_{3}-1, n_{4}} \\
& +\mu_{2}\left(\mathrm{~b}_{1} \mathrm{q}_{21}\right) Q_{n_{1}-1 n_{2}+1, n_{3}, n_{4}}+\mu_{2}\left(\mathrm{~b}_{1} \mathrm{q}_{21}+\mathrm{b}_{2} \mathrm{q}^{\prime} 2\right) Q_{n_{1}, n_{2}+1, n_{3}, n_{4}}
\end{aligned}
$$

```
\(+\mu_{2}\left(\mathrm{~b}_{1} \mathrm{q}_{23}+\mathrm{b}_{2} q_{23}^{\prime}\right) Q_{n_{1}, n_{2}+1, n_{3}-1, n_{4}}+\mu_{2}\left(\mathrm{~b}_{1} \mathrm{q}_{24}+\mathrm{b}_{2} q_{24}^{\prime}\right) Q_{n_{1}, n_{2}+1, n_{3}, n_{4}-1}\)
\(+\mu_{3}\left(\mathrm{c}_{1} \mathrm{q}_{3}+\mathrm{c}_{2} \mathrm{q}_{3}^{\prime}\right) Q_{n_{1}, n_{2}, n_{3}+1, n_{4}+\mu_{3} \mathrm{c}_{1} q_{31} Q_{n_{1}-1, n_{2}, n_{3}+1}, n_{4}}\)
\(+\left(\mathrm{c}_{1} q_{32}+\mathrm{c}_{2} q_{32}^{\prime}\right) \mu_{3} Q_{n_{1}, n_{2}-1, n_{3}+1, n_{4}}+\left(\mathrm{c}_{1} \mathrm{q}_{32}+\mathrm{c}_{2} q_{32}^{\prime}\right) \mu_{3} Q_{n_{1}, n_{2}-1, n_{3}+1, n_{4}}\)
\(+\left(\mathrm{c}_{1} \mathrm{q}_{34}+\mathrm{c}_{2} q_{34}^{\prime}\right) \mu_{3} Q_{n_{1}, n_{2}, n_{3}+1, n_{4}+1}+\left(\mathrm{d}_{1} \mathrm{q}_{4}+\mathrm{d}_{2} q_{4}^{\prime}\right) \mu_{4} Q_{n_{1}, n_{2}, n_{3}, n_{4}+1}\)
\(+\left(d_{1} q_{41}\right) \mu_{4} Q_{n_{1}-1, n_{2}, n_{3}, n_{4}+1}+\left(d_{1} q_{42}+d_{2} q_{42}^{\prime}\right) \mu_{4} Q_{n_{1}, n_{2}-1, n_{3}, n_{4}+1}\)
\(+\left(d_{1} q_{43}+d_{2} q_{43}^{\prime}\right) \mu_{4} Q_{n_{1}, n_{2}, n_{3}-1, n_{4}+1}\)
```

On solving this equation using generating function technique, we have the function:
$F(X, Y, Z, R)=f(X, Y, Z, R) / g(X, Y, Z, R)$
where

$$
\begin{aligned}
& f(X, Y, Z, R)=\mu_{1} F_{0}(Y, Z, R)\left[1-\frac{1}{x}\left\{\left(a_{1} q_{12}+a_{2} q_{12}^{\prime}\right) y+\left(a_{1} q_{13}+a_{2} q_{13}^{\prime}\right) Z+\left(a_{1} q_{14}+a_{2} q_{14}^{\prime}\right) R\right\}\right] \\
& +\mu_{2} F_{0}(X, Z, R)\left[1-\frac{1}{y}\left\{\left(b_{1} q_{2}+b_{2} q^{\prime}{ }_{2}\right)+\left(b_{1} q_{23}+b_{23}^{\prime}\right) Z+\left(b_{1} q_{24}+b_{2} q_{24}^{\prime}\right) R+\left(b_{1} q_{21}\right) x\right\}\right] \\
& +\mu_{3} F_{0}(X, Y, R)\left[1-\frac{1}{z}\left\{\left(C_{1} q_{3}+C_{2} q^{\prime}{ }_{3}\right)+y\left(C_{1} q_{32}+C_{2} q_{32}^{\prime}\right)+\left(C_{1} q_{34}+C_{2} q_{34}^{\prime}\right) R+\left(C_{1} q_{31}\right) x\right\}\right] \\
& +\mu_{4} F_{0}(X, Y, Z)\left[1-\frac{1}{R}\left\{\left(d_{1} q_{4}+d_{2} q_{4}^{\prime}\right)+y\left(d_{1} q_{42}+d_{2} q_{42}^{\prime}\right)+Z\left(d_{1} q_{43}+d_{2} q_{43}^{\prime}\right)+d_{1} q_{41} x\right\}\right]
\end{aligned}
$$

and
$g(X, Y, Z, R)=\lambda(1-x)+\mu_{1}\left[1-\frac{1}{x}\left\{\left(a_{1} q_{12}+a_{2} q_{12}^{\prime}\right) y+\left(a_{1} q_{13}+a_{2} q_{13}^{\prime}\right) Z+\left(a_{1} q_{14}+a_{2} q_{14}^{\prime}\right) R\right\}\right]$
$+\mu_{2}\left[1-\frac{1}{y}\left\{\left(b_{1} q_{2}+b_{2} q^{\prime}{ }_{2}\right)+\left(b_{1} q_{23}+b_{23}^{\prime}\right) Z+\left(b_{1} q_{24}+b_{2} q_{24}^{\prime}\right) R+\left(b_{1} q_{21}\right) x\right\}\right]$
$+\mu_{3}\left[1-\frac{1}{z}\left\{\left(C_{1} q_{3}+C_{2} q^{\prime}{ }_{3}\right)+\left(C_{1} q_{32}+C_{2} q_{32}^{\prime}\right)+\left(C_{1} q_{34}+C_{2} q_{34}^{\prime}\right) R+\left(C_{1} q_{31}\right) x\right\}\right]$
$+\mu_{4}\left[1-\frac{1}{R}\left\{\left(d_{1} q_{4}+d_{2} q^{\prime}{ }_{4}\right)+\left(d_{1} q_{42}+d_{2} q_{42}^{\prime}\right) y+\left(d_{1} q_{43}+d_{2} q_{43}^{\prime}\right) Z+d_{1} q_{41} x\right\}\right]$
For convenience, let us define:
$F_{1}=F_{0}(Y, Z, R)$
$F_{2}=F_{0}(X, Z, R)$
$F_{3}=F_{0}(X, Y, R)$
$F_{4}=F_{0}(X, Y, Z)$
For $x=y=Z=R=1$ and using the hypothesis/assumption reduces to in determinant form ($\frac{0}{0}$).
Taking $\mathrm{y}=\mathrm{z}=\mathrm{R}=1$ and limit $\mathrm{x} \rightarrow 1$ in (2) we have
$-\lambda+\mu_{1}-\mu_{2} b_{1} q_{21}-\mu_{3} C_{1} q_{31}-\mu_{4} d_{1} q_{41}=\mu_{1} F_{1}+b_{1} q_{21} \mu_{2} F_{2}-C_{1} q_{31} \mu_{3} F_{3}-d_{1} q_{41} \mu_{4} F_{4}$
Now, for $x=z=R=1$ and taking $y \rightarrow 1$ in (2):
(Using L'Hospital rule w.r.t y then but $x=y=z=R=1$)

$$
\begin{align*}
& -\mu_{1}\left(a_{1} q_{12}+a_{2} q_{12}^{\prime}\right)+\mu_{2}-\mu_{3}\left(C_{1} q_{32}+C_{2} q_{32}^{\prime}\right)-\mu_{4}\left(d_{1} q_{42}+d_{2} q_{42}^{\prime}\right) \\
& =-\mu_{1} F_{1}\left(a_{1} q_{12}+a_{2} q_{12}^{\prime}\right)+\mu_{2} F_{2}-\mu_{3}\left(C_{1} q_{32}+C_{2} q_{32}^{\prime}\right) F_{3}-F_{4} \mu_{4}\left(d_{1} q_{42}+d_{2} q_{42}^{\prime}\right) \tag{4}
\end{align*}
$$

For $\mathrm{x}=\mathrm{y}=\mathrm{R}=1$ and taking limit $\mathrm{z} \rightarrow 1$ in (2) we have:

$$
\begin{align*}
& -\mu_{2}\left(b_{1} q_{23}+b_{2} q_{23}^{\prime}\right)-\mu_{1}\left(a_{1} q_{13}+a_{2} q_{13}^{\prime}\right)+\mu_{3} \\
& -\mu_{4}\left(d_{1} q_{43}+d_{2} q_{43}^{\prime}\right)=-\mu_{1} F_{1}\left(a_{1} q_{13}+a_{2} q_{13}^{\prime}\right)-\mu_{2} F_{2}\left(b_{1} q_{23}+b_{2} q_{23}^{\prime}\right) \\
& +\mu_{3} F_{3}-\mu_{4} F_{4}\left(d_{1} q_{43}+d_{2} q_{43}^{\prime}\right) \tag{5}
\end{align*}
$$

For $\mathrm{x}=\mathrm{y}=\mathrm{Z}=1$ and taking limit $\mathrm{R} \rightarrow 1$ in (2) we have :

$$
\begin{align*}
& -\mu_{1}\left(a_{1} q_{14}+a_{2} q_{14}^{\prime}\right)-\mu_{2}\left(b_{2} q_{24}+b_{2} q_{24}^{\prime}\right)-\mu_{3}\left(C_{1} q_{34}+C_{2} q_{34}^{\prime}\right)+\mu_{4} \\
& =-\mu_{1}\left(a_{1} q_{14}+a_{2} q_{14}^{\prime}\right) F_{1}-\mu_{2}\left(b_{1} q_{24}+b_{2} q_{24}^{\prime}\right) F_{2}-\mu_{3}\left(C_{1} q_{34}+C_{2} q_{34}^{\prime}\right) F_{3}+\mu_{4} F_{4} \tag{6}
\end{align*}
$$

On solving (3), (4), (5) and (6), we have:

$F_{1}=$

$$
\left.\begin{array}{c}
\mu_{1} b_{1}\left(q_{21}\left(q_{12}\left(q_{14}^{\prime} q_{23}-q_{23}^{\prime}\right)-q_{13} q_{13}^{\prime} q_{23}-q_{12}^{\prime} q_{13}^{\prime} q_{23}^{\prime}\right)+\left(-q_{12}^{\prime} q_{14}^{\prime}-q_{13}\right) q_{21}^{2}\right) \\
+\lambda\left(q_{13}\left(\mu_{4} q_{23}+q_{21}^{\prime}\right)\right. \\
\left.+q_{14}^{\prime} q_{23}+q_{12}^{\prime}\left(q_{23}^{\prime} \mu_{4}+q_{14}^{\prime} q_{21}^{\prime}\right)-q_{23}^{\prime}\right)+\mu_{1}\left(q_{13}\left(-\mu_{4} q_{23}-q_{21}^{\prime}\right)-q_{14}^{\prime} q_{23}\right. \\
+q_{12}^{\prime}\left(-q_{23}^{\prime} \mu_{4}-q_{14}^{\prime} q_{21}^{\prime}\right) \\
\left.+q_{23}^{\prime}\right)+q_{41} \mu_{1} d_{1}\left(q_{12}\left(-\mu_{4} q_{23}-q_{21}^{\prime}\right)-q_{13}^{\prime} q_{23}+q_{21}\left(q_{12}^{\prime} \mu_{4}-1\right)-q_{12}^{\prime} q_{13}^{\prime} q_{21}^{\prime}\right) \\
\quad+q_{31} \mu_{1}\left(q_{12}\right.
\end{array}\right] \begin{gathered}
\left.\left(-q_{23}^{\prime} \mu_{4}-q_{14}^{\prime} q_{21}^{\prime}\right)+q_{21}\left(-q_{13} \mu_{4}-q_{14}^{\prime}\right)-q_{13}^{\prime} q_{23}^{\prime}+q_{13} q_{13}^{\prime} q_{21}^{\prime}\right) C_{1} \\
\begin{array}{r}
\mu_{1} b_{1}\left(q_{21}\left(q_{12}\left(q_{14}^{\prime} q_{23}-q_{23}^{\prime}\right)-q_{13} q_{13}^{\prime} q_{23}-q_{12}^{\prime} q_{13}^{\prime} q_{23}^{\prime}\right)+\left(-q_{12}^{\prime} q_{14}^{\prime}-q_{13}\right) q_{21}^{2}\right) \\
+\mu_{1}\left(q _ { 1 3 } \left(-\mu_{4} q_{23}\right.\right.
\end{array} \\
\begin{array}{r}
\left.\left.-q_{21}^{\prime}\right)-q_{14}^{\prime} q_{23}+q_{12}^{\prime}\left(-q_{23}^{\prime} \mu_{4}-q_{14}^{\prime} q_{21}^{\prime}\right)+q_{23}^{\prime}\right) \\
+q_{41} \mu_{1} d_{1}\left(q_{12}\left(-\mu_{4} q_{23}-q_{21}^{\prime}\right)-q_{13}^{\prime} q_{23}\right. \\
\left.+q_{21}\left(q_{12}^{\prime} \mu_{4}-1\right)-q_{12}^{\prime} q_{13}^{\prime} q_{21}^{\prime}\right)+q_{31} \mu_{1}\left(q_{12}\left(-q_{23}^{\prime} \mu_{4}-q_{14}^{\prime} q_{21}^{\prime}\right)\right. \\
\left.\left.+q_{13}^{\prime} q_{23}^{\prime}+q_{13} q_{13}^{\prime} q_{21}^{\prime}\right) C_{1} \quad-q_{13} \mu_{4}-q_{14}^{\prime}\right)
\end{array}
\end{gathered}
$$

$\mu_{2} b_{1}\left(q_{21}\left(q_{12}\left(q_{14}^{\prime} q_{23}-q_{23}^{\prime}\right)-q_{13} q_{13}^{\prime} q_{23}-q_{12}^{\prime} q_{13}^{\prime} q_{23}^{\prime}\right)+\left(-q_{12}^{\prime} q_{14}^{\prime}-q_{13}\right) q_{21}^{2}\right)$
$\left.+\mu_{2}\left(q_{13}\left(-\mu_{4} q_{23}-q_{21}^{\prime}\right)-q_{14}^{\prime} q_{23}+q_{12}^{\prime}\left(-q_{23}^{\prime} \mu_{4}-q_{14}^{\prime} q_{21}^{\prime}\right)+q_{23}^{\prime}\right)+q_{23}^{\prime}\right)+q_{41} \mu_{2}$
$d_{1}\left(q_{12}\left(-\mu_{4} q_{23}-q_{21}^{\prime}\right)-q_{13}^{\prime} q_{23}+q_{21}\left(q_{12}^{\prime} \mu_{4}-1\right)-q_{12}^{\prime} q_{13}^{\prime} q_{21}^{\prime}\right)+\lambda\left(q_{12}\left(q_{14}^{\prime} q_{23}-q_{23}^{\prime}\right)\right.$
$\left.-q_{13} q_{13}^{\prime} q_{23}-q_{12}^{\prime} q_{13}^{\prime} q_{23 \prime}^{\prime}+\left(-q_{12}^{\prime} q_{14}^{\prime}-q_{13}\right) q_{21}\right)+q_{31} \mu_{2\left(q_{12}\right.}\left(-q_{23}^{\prime} \mu_{4}-q_{14}^{\prime} q_{21}^{\prime}\right)$
$F_{2}=\frac{\left.+q_{21}\left(-q_{13} \mu_{4}-q_{14}^{\prime}\right)-q_{13}^{\prime} q_{23}^{\prime}+q_{13} q_{13}^{\prime} q_{21}^{\prime}\right) C_{1}}{\mu_{2} b_{1}\left(q_{21}\left(q_{12}\left(q_{1}^{\prime} q_{23}-q_{23}^{\prime}\right)-q_{13} q_{13}^{\prime} q_{23}-q_{12}\right.\right.}$
$\mu_{2} b_{1}\left(q_{21}\left(q_{12}\left(q_{14}^{\prime} q_{23}-q_{23}^{\prime}\right)-q_{13} q_{13}^{\prime} q_{23}-q_{12}^{\prime} q_{13}^{\prime} q_{23}^{\prime}\right)+\left(-q_{12}^{\prime} q_{14}^{\prime}-q_{13}\right) q_{21}^{2}\right)+$
$\mu_{2}\left(q_{13}\left(-\mu_{4} q_{23}-q_{21}^{\prime}\right)-q_{14}^{\prime} q_{23}+q_{12}^{\prime}\left(-q_{23}^{\prime} \mu_{4}-q_{14}^{\prime} q_{21}^{\prime}\right)+q_{23}^{\prime}\right)+q_{41} \mu_{2} d_{1}$
$\left(q_{12}\left(-\mu_{4} q_{23}-q_{21}^{\prime}\right)-q_{13}^{\prime} q_{23}+q_{21}\left(q_{12}^{\prime} \mu_{4}-1\right)-q_{12}^{\prime} q_{13}^{\prime} q_{21}^{\prime}\right)+q_{31} \mu_{2}$
$\left(q_{12}\left(-q_{23}^{\prime} \mu_{4}-q_{14}^{\prime} q_{21}^{\prime}\right)+q_{21}\left(-q_{13} \mu_{4}-q_{14}^{\prime}\right)-q_{13}^{\prime} q_{23}^{\prime}+q_{13} q_{13}^{\prime} q_{21}^{\prime}\right) C_{1}$
$\mu_{3} b_{1}\left(q_{21}\left(q_{12}\left(q_{14}^{\prime} q_{23}-q_{23}^{\prime}\right)-q_{13} q_{13}^{\prime} q_{23}-q_{12}^{\prime} q_{13}^{\prime} q_{23}^{\prime}\right)+\left(-q_{12}^{\prime} q_{14}^{\prime}-q_{13}\right) q_{21}^{2}\right)$ $+\mu_{3}\left(q_{13}\left(-\mu_{4} q_{23}-q_{21}^{\prime}\right)-q_{14}^{\prime} q_{23}+q_{12}^{\prime}\left(-q_{23}^{\prime} \mu_{4}-q_{14}^{\prime} q_{21}^{\prime}\right)+q_{23}^{\prime}\right)+q_{41} \mu_{3} d_{1}$ $\left(q_{12}\left(-\mu_{4} q_{23}-q_{21}^{\prime}\right)-q_{13}^{\prime} q_{23}+q_{21}\left(q_{12}^{\prime} \mu_{4}-1\right)-q_{12}^{\prime} q_{13}^{\prime} q_{21}^{\prime}\right)+q_{31} \mu_{3}\left(q_{12}\right.$ $\left.\left(-q_{23}^{\prime} \mu_{4}-q_{14}^{\prime} q_{21}^{\prime}\right)+q_{21}\left(-q_{13} \mu_{4}-q_{14}^{\prime}\right)-q_{13}^{\prime} q_{23}^{\prime}+q_{13} q_{13}^{\prime} q_{14}^{\prime}\right) C_{1}$
$\mathrm{F}_{3}=\frac{+\lambda\left(q_{12}\left(-q_{23}^{\prime} \mu_{4}-q_{14}^{\prime} q_{21}^{\prime}\right)+q_{21}\left(-q_{13} \mu_{4}-q_{14}^{\prime}\right)-q_{13}^{\prime} q_{23}^{\prime}+q_{13} q_{13}^{\prime} q_{21}^{\prime}\right)}{\mu_{3}\left(q_{21}\left(q_{12}\left(q_{14}^{\prime} q_{23} q_{2}^{\prime}\right)-q_{13} q_{13}^{\prime} q_{23}^{\prime} q_{12}^{\prime} q_{13}^{\prime} q_{3}^{\prime}\right)+\left(q_{12}^{\prime} q_{13}^{\prime}\right.\right.}$
$3=\frac{\mu_{3} b_{1}\left(q_{21}\left(q_{12}\left(q_{14}^{\prime} q_{23}-q_{23}^{\prime}\right)-q_{13} q_{13}^{\prime} q_{23}-q_{12}^{\prime} q_{13}^{\prime} q_{23}^{\prime}\right)+\left(-q_{12}^{\prime} q_{14}^{\prime}-q_{13}\right) q_{21}^{2}\right)}{q_{2}}$
$+\mu_{3}\left(q_{13}\left(-\mu_{4} q_{23}-q_{21}^{\prime}\right)-q_{14}^{\prime} q_{23}+q_{12}^{\prime}\left(-q_{23}^{\prime} \mu_{4}-q_{14}^{\prime} q_{21}^{\prime}\right)+q_{23}^{\prime}\right)+q_{14} \mu_{3} d_{1}$
$\left(q_{12}\left(-\mu_{4} q_{23}-q_{21}^{\prime}\right)-q_{13}^{\prime} q_{23}+q_{21}\left(q_{12}^{\prime} \mu_{4}-1\right)-q_{12}^{\prime} q_{13}^{\prime} q_{21}^{\prime}\right)+q_{31} \mu_{3}\left(q_{12}\right.$
$\left.\left(-q_{23}^{\prime} \mu_{4}-q_{14}^{\prime} q_{21}^{\prime}\right)+q_{21}\left(-q_{13} \mu_{4}-q_{14}^{\prime}\right)-q_{13}^{\prime} q_{23}^{\prime}+q_{13} q_{13}^{\prime} q_{21}^{\prime}\right) c_{1}$
$\mathrm{F}_{4}=1+\frac{\lambda\left(q_{12}\left(-\mu_{4} q_{23}-q_{21}^{\prime}\right)-q_{13}^{\prime} q_{23}+q_{21}\left(q_{12}^{\prime} \mu_{4}-1\right)-q_{12}^{\prime} q_{13}^{\prime} q_{21}^{\prime}\right)}{\mu_{4} b_{1}\left(q_{21}\left(q_{12}\left(q_{14}^{\prime} q_{23}-q_{23}^{\prime}\right)-q_{13} q_{13}^{\prime} q_{23}-q_{12}^{\prime} q_{13}^{\prime} q_{23}^{\prime}\right)+\left(-q_{12}^{\prime} q_{14}^{\prime}-q_{13}\right) q_{2}\right.}$
$\mu_{4} b_{1}\left(q_{21}\left(q_{12}\left(q_{14}^{\prime} q_{23}-q_{23}^{\prime}\right)-q_{13} q_{13}^{\prime} q_{23}-q_{12}^{\prime} q_{13}^{\prime} q_{23}\right)+\left(-q_{12}^{\prime} q_{14}^{\prime}-q_{13}\right) q_{21}^{2}\right)$ $+\mu_{4}\left(q_{13}\left(-\mu_{4} q_{23}-q_{21}^{\prime}\right)-q_{14}^{\prime} q_{23}+q_{12}^{\prime}\left(-q_{23}^{\prime} \mu_{4}-q_{14}^{\prime} q_{21}^{\prime}\right)+q_{23}^{\prime}\right)+q_{14} \mu_{4} d_{1}\left(q_{12}\left(-\mu_{4} q_{23}\right.\right.$ $\left.\left.-q_{21}^{\prime}\right)-q_{13}^{\prime} q_{23}+q_{21}\left(q_{12}^{\prime} \mu_{4}-1\right)-q_{12}^{\prime} q_{13}^{\prime} q_{21}^{\prime}\right)+q_{31} \mu_{4}\left(q_{12}\left(-q_{23}^{\prime} \mu_{4}-q_{14}^{\prime} q_{21}^{\prime}\right)\right.$ $\left.+q_{21}\left(-q_{13} \mu_{4}-q_{14}^{\prime}\right)-q_{13}^{\prime} q_{23}^{\prime}+q_{13} q_{13}^{\prime} q_{21}^{\prime}\right) c_{1}$
Let $L q_{1}, L q_{2}, L q_{3}$ and $L q_{4}$ denote the mean queue length at $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$ and $4^{\text {th }}$ server then we have:

$$
\begin{aligned}
L q_{1}= & \frac{\left(\frac{\partial f}{\partial X}\right)_{(1,1,1,1)}\left(\frac{\partial^{2} g}{\partial X^{2}}\right)_{(1,1,1,1)}+\left(\frac{\partial g}{\partial X}\right)_{(1,1,1,1)}\left(\frac{\partial^{2} f}{\partial X^{2}}\right)_{(1,1,1,1)}}{2\left[\left(\frac{\partial g}{\partial X}\right)_{(1,1,1,1)}\right]^{2}} \\
L q_{1}= & \frac{\left(\mu_{1} F_{1}-b_{1} q_{21} \mu_{2} F_{2}-c_{1} q_{31} \mu_{3} F_{3}-d_{1} q_{41} \mu_{4} F_{4}\right)\left(-2 \mu_{1}\right)+}{2\left[-\lambda+\mu_{1}\left\{\left(a_{1} q_{12}+a_{2} q_{12}^{\prime}\right)+\left(a_{1} q_{13}+a_{2} q_{13}^{\prime}\right)+\left(a_{1} q_{14}+a_{2} q_{14}^{\prime}\right)\right\}-\mu_{2} b_{1} q_{21}\right.} \\
& \left.-\mu_{3} c_{1} q_{31}-\mu_{4} d_{1} q_{41}\right]^{2}
\end{aligned} \quad \begin{aligned}
& \left(\frac{\partial f}{\partial Y}\right)_{(1,1,1,1)}\left(\frac{\partial^{2} g}{\partial Y^{2}}\right)_{(1,1,1,1)}+\left(\frac{\partial g}{\partial Y}\right)_{(1,1,1,1)}\left(\frac{\partial^{2} f}{\partial Y^{2}}\right)_{(1,1,1,1)} \\
& L q_{2}=
\end{aligned}
$$

$\left[-\mu_{1} F_{1}\left(a_{1} q_{2}+a_{2} q_{12}^{\prime}\right)+\mu_{2} F_{2}-\mu_{3} F_{3}\left(c_{1} q_{32}+c_{2} q_{32}^{\prime}\right)-\mu_{4} F_{4}\left(d_{1} q_{42}+d_{2} q_{42}^{\prime}\right)\right]\left(-2 \mu_{2}\right)+$
$=\frac{\left[-\mu_{1}\left(a_{1} q_{12}+a_{2} q_{12}^{\prime}\right)+\mu_{2}-\mu_{3}\left(c_{1} q_{32}+c_{2} q_{32}^{\prime}\right)-\mu_{4}\left(d_{1} q_{42}+d_{2} q_{42}^{\prime}\right)\right]\left(2-\mu_{2} F_{2}\right)}{2\left[\mu_{1}\left(a_{1} q_{12}\right.\right.}$
$2\left[-\mu_{1}\left(a_{1} q_{12}+a_{2} q_{12}^{\prime}\right)+\mu_{2}-\mu_{3}\left(c_{1} q_{32}+c_{2} q_{32}^{\prime}\right)-\mu_{4}\left(d_{1} q_{42}+d_{2} q_{42}^{\prime}\right)\right]^{2}$

$$
\begin{aligned}
& L q_{3}=\frac{\left(\frac{\partial f}{\partial Z}\right)_{(1,1,1,1)}\left(\frac{\partial^{2} g}{\partial Z^{2}}\right)_{(1,1,1,1)}+\left(\frac{\partial g}{\partial z}\right)_{(1,1,1,1)}\left(\frac{\partial^{2} f}{\partial Z^{2}}\right)_{(1,1,1,1)}}{2\left[\left(\frac{\partial g}{\partial z}\right)_{(1,1,1,1)}\right]^{2}} L q_{3} \\
& =\frac{\left[-\mu_{1} F_{1}\left(a_{1} q_{13}+a_{2} q_{13}^{\prime}\right)-\mu_{2} F_{2}\left(b_{1} q_{23}+b_{2} q_{23}^{\prime}\right)+\mu_{3} F_{3}-\mu_{4} F_{4}\left(d_{1} q_{43}+d_{2} q_{43}^{\prime}\right)\right]\left(-2 \mu_{3}\right)+}{\left[-\mu_{1}\left(a_{1} q_{13}+a_{2} q_{13}^{\prime}\right)-\mu_{2}\left(b_{1} q_{23}+b_{2} q_{23}^{\prime}\right)+\mu_{3}-\mu_{4}\left(d_{1} q_{43}+d_{2} q_{43}^{\prime}\right)\right]\left(-2 \mu_{3} F_{3}\right)} \\
& 2\left[-\mu_{1}\left(a_{1} q_{13}+a_{2} q_{13}^{\prime}\right)-\mu_{2}\left(b_{1} q_{23}+b_{2} q_{23}^{\prime}\right)+\mu_{3}-\mu_{4}\left(d_{1} q_{43}+d_{2} q_{43}^{\prime}\right)\right]^{2} \\
& =\frac{\left(\frac{\partial f}{\partial R}\right)_{(1,1,1,1)}\left(\frac{\partial^{2} g}{\partial R^{2}}\right)_{(1,1,1,1)}+\left(\frac{\partial g}{\partial R}\right)_{(1,1,1,1)}\left(\frac{\partial^{2} f}{\partial R^{2}}\right)_{(1,1,1,1)}}{2\left[\left(\frac{\partial g}{\partial R}\right)_{(1,1,1,1)}\right]^{2}} \\
& L q_{4} \\
& L q_{4}=\frac{\left[-\mu_{1}\left(a_{1} q_{14}+a_{2} q_{14}^{\prime}\right)-\mu_{2}\left(b_{1} q_{24}+b_{2} q_{24}^{\prime}\right)-\mu_{3}\left(c_{1} q_{34}+c_{2} q_{34}^{\prime}\right)+\mu_{4}\left(-2 \mu_{4} F_{4}\right)\right.}{2\left[-\left(a_{1} q_{14}+a_{2} q_{14}^{\prime}\right) \mu_{1}-\left(b_{1} q_{24}+b_{2} q_{24}^{\prime}\right) \mu_{2}-\left(c_{1} q_{34}+c_{2} q_{34}^{\prime}\right) \mu_{3}+\mu_{4}\right]^{2}}
\end{aligned}
$$

Let Lq denote the mean queue length of the queueing system. Then we have:
$L q=L q_{1}+L q_{2}+L q_{3}+L q_{4}$
$\left(\mu_{1} F_{1}-b_{1} q_{21} \mu_{2} F_{2}-c_{1} q_{31} \mu_{3} F_{3}-d_{1} q_{41} \mu_{4} F_{4}\right)\left(-2 \mu_{1}\right)+$
$\mathrm{Lq}=\frac{\left(-\lambda+\mu_{1}-b_{1} q_{21} \mu_{2}-c_{1} q_{31} \mu_{3}-d_{1} q_{41} \mu_{4}\right)\left(-2 \mu_{1} F_{1}\right)}{2\left[-\lambda+\mu_{1}\left\{\left(a_{1} q_{12}+a_{2} q_{12}^{\prime}\right)+\left(a_{1} q_{13}+a_{2} q_{13}^{\prime}\right)+\left(a_{1} q_{14}+a_{2} q_{14}^{\prime}\right)\right\}-\mu_{2} b_{1} q_{21}\right.}+$ $\left.-\mu_{3} c_{1} q_{31}-\mu_{4} d_{1} q_{41}\right]^{2}$
$\left[-\mu_{1} F_{1}\left(a_{1} q_{2}+a_{2} q_{12}^{\prime}\right)+\mu_{2} F_{2}-\mu_{3} F_{3}\left(c_{1} q_{32}+c_{2} q_{32}^{\prime}\right)-\mu_{4} F_{4}\left(d_{1} q_{42}+d_{2} q_{42}^{\prime}\right)\right]\left(-2 \mu_{2}\right)+$
$\left[-\mu_{1}\left(a_{1} q_{12}+a_{2} q_{12}^{\prime}\right)+\mu_{2}-\mu_{3}\left(c_{1} q_{32}+c_{2} q_{32}^{\prime}\right)-\mu_{4}\left(d_{1} q_{42}+d_{2} q_{42}^{\prime}\right)\right]\left(2-\mu_{2} F_{2}\right)$
$2\left[-\mu_{1}\left(a_{1} q_{12}+a_{2} q_{12}^{\prime}\right)+\mu_{2}-\mu_{3}\left(c_{1} q_{32}+c_{2} q_{32}^{\prime}\right)-\mu_{4}\left(d_{1} q_{42}+d_{2} q_{42}^{\prime}\right)\right]^{2}$
$\left[-\mu_{1} F_{1}\left(a_{1} q_{13}+a_{2} q_{13}^{\prime}\right)-\mu_{2} F_{2}\left(b_{1} q_{23}+b_{2} q_{23}^{\prime}\right)+\mu_{3} F_{3}-\mu_{4} F_{4}\left(d_{1} q_{43}+d_{2} q_{43}^{\prime}\right)\right]\left(-2 \mu_{3}\right)+$
$+\frac{\left[-\mu_{1}\left(a_{1} q_{13}+a_{2} q_{13}^{\prime}\right)-\mu_{2}\left(b_{1} q_{23}+b_{2} q_{23}^{\prime}\right)+\mu_{3}-\mu_{4}\left(d_{1} q_{43}+d_{2} q_{43}^{\prime}\right)\right]\left(-2 \mu_{3} F_{3}\right)}{2\left[-\mu_{1}\left(a_{1} q_{13}+a_{2} q_{13}^{\prime}\right)-\mu_{2}\left(b_{1} q_{23}+b_{2} q_{23}^{\prime}\right)+\mu_{3}-\mu_{4}\left(d_{1} q_{43}+d_{2} q_{43}^{\prime}\right)\right]^{2}}+$
$\left[-\mu_{1} F_{1}\left(a_{1} q_{14}+a_{2} q_{14}^{\prime}\right)-\mu_{2} F_{2}\left(b_{1} q_{24}+b_{2} q_{24}^{\prime}\right)-\mu_{3} F_{3}\left(c_{1} q_{34}+c_{2} q_{34}^{\prime}\right)+\mu_{4} F_{4}\right]\left(-2 \mu_{4}\right)+$
$\left[-\mu_{1}\left(a_{1} q_{14}+a_{2} q_{14}^{\prime}\right)-\mu_{2}\left(b_{1} q_{24}+b_{2} q_{24}^{\prime}\right)-\mu_{3}\left(c_{1} q_{34}+c_{2} q_{34}^{\prime}\right)+\mu_{4}\left(-2 \mu_{4} F_{4}\right)\right.$
$2\left[-\left(a_{1} q_{14}+a_{2} q_{14}^{\prime}\right) \mu_{1}-\left(b_{1} q_{24}+b_{2} q_{24}^{\prime}\right) \mu_{2}-\left(c_{1} q_{34}+c_{2} q_{34}^{\prime}\right) \mu_{3}+\mu_{4}\right]^{2}$

Numerical Results and Discussion

- Behaviour of Mean Queue Length (Lq) of the system with respect to $\boldsymbol{\lambda}$ (the mean arrival rate) for different values of a_{1} (the probability of leaving $1^{\text {st }}$ server $1^{\text {st }}$ time) is depicted in Table 1 and in Fig. 1 keeping the values of other parameters as fixed.

Table 1
$\mu_{1}=1, \mu_{2}=3, \mu_{3}=5, \mu_{4}=0.2, b_{1}=0.7, b_{2}=0.3, c_{1}=0.5, c_{2}=0.5, d_{1}=0.8, d_{2}=0.2, q_{13}=0.3, q_{12}=0.2, q_{14}=0.5$, $\mathrm{q}_{13^{\prime}}=0.2, \mathrm{q}_{12}{ }^{\prime}=0.1, \mathrm{q}_{14^{\prime}}=0.7 \mathrm{q}_{2}=0.1, \mathrm{q}_{21}=0.4, \mathrm{q}_{23}=0.3, \mathrm{q}_{24}=0.2, \mathrm{q}_{2}^{\prime}=0.3, \mathrm{q}^{\prime}{ }_{21}=0.3, \mathrm{q}_{23}^{\prime}=0.1, \mathrm{q}^{\prime}{ }_{24}=0.3$, $q_{3}=0.6, q_{31}=0.2, q_{32}=0.15, q_{34}=0.05, q_{3}{ }^{\prime}=0.2, q_{32}{ }^{\prime}=0.3, q^{\prime}{ }_{34}=0.5, q_{4}=0.7, q_{41}=0.1, q_{42}=0.15, q_{43}=0.05$, $\mathrm{q}^{\prime}=0.8, \mathrm{q}_{4}^{\prime} 2=0.15, \mathrm{q}^{\prime}{ }_{4}=0.05$

$\boldsymbol{\lambda}$	$\mathbf{a}_{\mathbf{1}}=\mathbf{0 . 6}$	$\mathbf{a}_{\mathbf{1}}=\mathbf{0 . 7}$	$\mathbf{a}_{\mathbf{1}}=\mathbf{0 . 8}$
1	22.22261	21.56559	20.91802
2	39.27666	38.12311	36.98634
3	52.71691	51.06685	49.44086
4	62.54338	60.3968	58.2816
5	68.75606	66.11295	63.50855
6	71.35494	68.21532	65.1217
7	70.34004	66.7039	63.12107
8	65.71135	61.57868	57.50665
9	57.46887	52.83968	48.27844

Fig 1
Following can be interpreted from Table 1 and Fig. 1:

- Mean queue length Lq of the system increases for $\lambda \leq 6$ and decreases for $\lambda>6$ with the increase in the probability a_{1}.
- Mean queue length Lq of the system decreases with increase in with the increase in a_{1}.
- Behaviour of Mean Queue Length (Lq) of the system with respect to μ_{1} (the mean service rate of the $1^{\text {st }}$ server) for different values of μ_{2} (the mean service rate of the $2^{\text {nd }}$ server) is depicted in Table 2 and in Fig. 2 keeping the values of other parameters as fixed.

Table 2

$\lambda=1, \mathrm{a}_{1}=0.6, \mathrm{a}_{2}=0.4, \mu_{3}=5, \mu_{4}=0.2, \mathrm{~b}_{1}=0.7, \mathrm{~b}_{2}=0.3, \mathrm{c}_{1}=0.5, \mathrm{c}_{2}=0.5, \mathrm{~d}_{1}=0.8, \mathrm{~d}_{2}=0.2, \mathrm{a}_{1}=0.3$,
$\mathrm{q}_{12}=0.2, \mathrm{q}_{14}=0.5, \mathrm{q}_{13^{\prime}}=0.2, \mathrm{q}_{12}{ }^{\prime}=0.1, \mathrm{q}_{14^{\prime}}=0.7 \mathrm{q}_{2}=0.1, \mathrm{q}_{21}=0.4, \mathrm{q}_{23}=0.3, \mathrm{q}_{24}=0.2, \mathrm{q}_{2}^{\prime}=0.3, \mathrm{q}^{\prime}{ }_{21}=0.3$, $\mathrm{q}^{\prime}{ }_{23}=0.1, \mathrm{q}_{2}^{\prime}{ }_{4}=0.3, \mathrm{q}_{3}=0.6, \mathrm{q}_{31}=0.2, \mathrm{q}_{32}=0.15, \mathrm{q}_{34}=0.05, \mathrm{q}_{3}^{\prime}=0.2, \mathrm{q}_{32}{ }^{\prime}=0.3, \mathrm{q}_{34}^{\prime}=0.5, \mathrm{q}_{4}=0.7, \mathrm{q}_{41}=0.1$, $\mathrm{q}_{42}=0.15, \mathrm{q}_{43}=0.05, \mathrm{q}^{\prime}=0.8, \mathrm{q}_{42}^{\prime}=0.15, \mathrm{q}_{43}^{\prime}=0.05$

$\mathrm{q}_{42}=0.15, \mathrm{q}_{43}=0.05, \mathrm{q}_{4}^{\prime}=0.8, \mathrm{q}_{42}=0.15, \mathrm{q}_{43}{ }^{\prime}=0.05$					
$\boldsymbol{\mu}_{\mathbf{1}}$	$\boldsymbol{\mu}_{2}=\mathbf{3}$	31.26786	$\boldsymbol{\mu}_{2}=5$		
1	22.22261	58.29173	41.19353		
2	43.72358	87.44017	73.86175		
3	66.66512	122.4997	109.2694		
4	94.65527	165.9546	151.3747		
5	130.1196	220.0635	202.6914		
6	175.2683	287.0139	265.4773		
7	232.2263	368.9483	434.8998		
8	303.0525	467.9531	543.9549		
9	389.8128				

Fig. 2

Following can be interpreted from Table 2 and Fig. 2:

- Mean queue length $L q$ of the system increases with respect to μ_{1}.
- Mean queue length Lq of the system increases with respect to μ_{2}.

References

4. Atar R and Mendelson G, "On the non-markovian multi-class queue under risk-sensitive cost", Queuing Systems, 84 (3-4), 2016, 265-78.
5. Atencia, I and Moreno, P; "Discrete-time Geo ${ }^{[X]} / G_{H} / 1$ Retrial Queue with Bernoulli Feedback", Computers \& Mathematics with Applications, 47, (8-9) , April-May 2004, 1273-94.
6. Avrachenkov K, Morozov E and Steyaert B, "Sufficient stability conditions for multi class constant retrial rate systems", Queuing Systems, 82(1-2), 2016, 149-71.
7. Ginting D.A., Aristotles and Endah O.D., "Implementation of multi-level feedback queue algorithm in restaurant order food application development for android and ios platforms", International Journals of Computer Applications, 180 (13), 2013, 24-30.
8. Gupta, V.K., Joshi T.N. and Tiwari, S.K., "A balked M/D/1 feedback queuing models", IOSR- JM, 12(1), 2016, 83-87.
9. Kalyanaraman R and Suvitha V .; "A single server vacation queue with type of services and with restricted admissibility", Far East Journal of Mathematical Sciences, 103 (1) 2018, 125-157.
10. Ke J.C. and Chang F.M., "Modified vacation policy for M/G/1 retrial queue with balking and feedback", Computers and Industrial Engineering, 57 (1), 2009, 433-43.
11. Kumar B.K., Arivudainambi D and Krishanmoorthy A, "Some results on a generalized M/G/1 feedback queue with negative customers", Annals of Operation Research, 143(1), 2006, 277-96.
12. Kumar, B.K, Madheshwari S.P. and Kumar, A.V., "The M/G/1 retrial queue with feedback and starting failures", Applied Mathematical Modeling, 26 (11), 2002, 1057-75.
13. Kumar, B.K, Madheshwari, S.P. and Lakshmi S.R.A., "An M/G/1 Bernoulli feedback retrial queuing system with negative customers", Operation Research, 13(2), 2013, 187-210.
14. Kumar B.K and Raja J, "On multi-server feedback retrial queues with balking and control retrial rate", Annals of Operation Research, 141(1), 2006, 211-32.
15. Kumar S. and Taneja G.; "Analysis of a hierarchical structured queuing system with three service channels, and chances of repetition of service with feedback", International Jounal of Pure and Applied Mathematics, 115 (2) 2017, 383-363.
16. Latouche, Guy, Nguyen and Giang T.; "Feedback Control: Two-Sided Markov-Modulated Brownian Motion with Instantaneous Change of Phase at Boundaries", Performance Evaluation, 106, December 2016, 30-49.
17. Sundri S.M. and Srinivasan S, "Multi-phase M/G/1 queue with Bernoulli feedback and multiple server vacation", 52(1), 2012, 18-23.
18. Tang J and Zhao Y.Q., "Stationary tail asymptotic of a tandem queue with feedback", Annals of Operation Research, 160 (1), 2008,173-89.
19. Kamal et al. (2023). Mathematical modeling of some feedback queueing systems. Ph. D. Thesis, Baba Mastnath University, Asthal Bohar, Rohtak, Haryana..

[^0]: Assistant Professor, Department of Mathematics, G.B.D.C. Rohtak, Haryana, India.
 ... Associate Professor, Department of Mathematics, Baba Mastnath University, Rohtak, Haryana, India ... Research Scholar, Department of Mathematics, Baba Mastnath University, Rohtak, Haryana, India.

