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ABSTRACT

Most of the industrial time series possessed seasonal pattern, such as in time series for apparel
or toys. Hence, seasonal forecasting occupied prominent importance. This research paper depicts triple
exponential smoothing method for seasonal time series data.
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Introduction
Systematic projections about the future performance derived from the historical and current data

is known as forecasting. Forecasting is used where precision of a decision is unknown Forecasting helps
in the reduction of risks by making available the information about the future outcome. For the time series
to be forecasted, the first step is to capture the data and then to select a model for forecasting. Various
statistical and graphical techniques may be useful in the selecting the apt process. Specification of a
model would be the next step after selecting the model, which involves selection of the variables,
selection of the form of the equation of relationship, and evaluating the values of the parameters on that
equation. After the model’s specification, its performance characteristics must be verified or validated by
comparison of its forecasts with historical data. Error measures such as MAPE (Mean absolute
percentage error), RAE (Relative absolute error) MSE (Mean Square Error) may be used for validating
the model. Selecting suitable error measure has an important effect on the conclusions about which of a
set of forecasting methods is most appropriate.

Time-series forecasting’s goal is to separate the pattern from the error by understanding the
pattern’s trend. Various time series forecasting methods are there in practice such as the Moving
Averages method, Linear Regression with Time, Exponential Smoothing etc. This research paper
presents report on the triple Exponential Smoothing technique on time series that possess seasonality.
Basic Terminologies
 Additive and Multiplicative Seasonality

Seasonality is often found in time series data, which can be defined as the tendency of time-
series data to possess behavior that iterates itself every L periods, where L is the season length in
periods. Hence the season is used to denote the time period before the beginning of the behavior to
repeat itself. For example, the peak can probably be seen in annual sales of toys in the months of
November and December, and during the summer (with a much smaller peak). The relative amount of
increase in sales during December may slowly change from year to year, as this pattern is going to
repeat every year. For example, the sales for a specific toy in the month of December may increase by
1million dollars every year. Hence, we count on our estimate that for every December the amount of 1
million dollars (over the respective annual average) to adjust for the seasonality factor which in this case
is additive.

 Research Scholar, University of Allahabad, Allahabad, U.P, India.
 Assistant Professor, University of Allahabad, Allahabad, U.P, India.



50 Inspira- Journal of Commerce, Economics & Computer Science: Volume 05, No. 03, July-September, 2019

The sales for a specific toy may increase by 40% during the month of December that is the
increment by 1.4, so when the sales for the toys are generally slow, then the absolute (dollar) increase in
sales will be relatively slow (but the percentage will be constant).
 Linear, Exponential, and Damped Trend

To continue with the toy example above, the sales for a toy can show a linear upward trend
(e.g., each year, sales increase by 1 million dollars), exponential growth (e.g., each year, sales increase
by a factor of 1.3), or a damped trend (during the first year sales increase by 1 million dollars; during the
second year the increase is only 80% over the previous year, i.e., $800,000; during the next year it is
again 80% over the previous year, i.e., $800,000 * .8 = $640,000; etc.).
 Seasonality Index (SI)

Seasonality Index of a period denotes how much this period deviates from the annual average.
Stationarity

To solve forecasting problems, a stationary condition needs to be met.
 First Order Stationary

If the expected value of X(t) remains same for all t it is known as first order stationary .
 Second Order Stationary

If the first order stationary and covariance between X(t) and X(s) is function of length (t-s) only
then it is known as second order stationary
Exponential Smoothing

The process for continually iterating a forecast taking into consideration the  more recent data
then it is known as exponential smoothing. Exponential Smoothing placed exponentially increasing
weights to the recent observations than the older ones.
 Single Exponential Smoothing

This is also called as simple exponential smoothing. Simple smoothing is used for shorter-range
forecast, usually just one month into the future, assuming that the data fluctuates around a mean that is
quite stable.

The formula for simple exponential smoothing is:
St = α* Xt + (1 − α) _* St-1 (1)

Each new smoothed value (forecast) is computed as the weighted average of the current
observation and the previous smoothed observation when applied recursively to each successive
observation in the series. Thus, in effect, each smoothed value is the weighted average of the previous
observations, where the weights decrease exponentially depending on the value of parameter (α). If it is
equal to 1 (one) then the previous observations are ignored entirely; if it is equal to 0 (zero), then the
current observation is ignored entirely, and the smoothed value consists entirely of the previous
smoothed value (which in turn is computed from the smoothed observation before it, and so on; thus all
smoothed values will be equal to the initial smoothed value S0). In-between values will produce
intermediate results.
Initial Value

The initial value of St has a prominent role in computing all the subsequent values. Setting it to
y1 is one method of initialization.
 Double Exponential Smoothing

This method is useful when the time-series data shows a trend.  In this two components needs
to be updated for each period: - level and trend, where level is a smoothed estimate of the value of the
data at the end of each period whereas trend depicts a smoothed estimate of average growth at the end
of each period. The formula is as follows:
St = α * yt + (1 − α) * (St-1 + bt-1)          0 < α < 1 (2)
bt = γ* (St – St-1) + (1 − γ) *  bt-1 0 < γ < 1 (3)
Initial Values

Various methods are available to select an initial values for St and bt.

S1 is  set to y1
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Three suggestions for b1

b1=y2-y1

b1 = [(y2 – y1) + (y3 – y2) + (y4 – y3)]/3
b1 = (yn – y1)/(n − 1).
 Triple Exponential Smoothing

This method is applicable when both the trend and seasonality exhibit by the time-series data.
We need to add a third parameter to handle seasonality.
 Multiplicative Seasonal Model
 Additive Seasonal Model

The rest of the report focuses on these two models.
Multiplicative Seasonal Models

This model is applied when Multiplicative seasonality is possessed by the time-series data as
discussed in Section 2.1.
 Overview

In this model, we assume that the time series is represented by the model
yt = (b1 + b2t) St +€t (4)
Where
b1 is the base signal also called the permanent component
b2 is a linear trend component
St is a multiplicative seasonal factor
€t is the random error component
Let the length of the season be L periods.

The seasonal factors are defined so that they sum to the length of the season, i.e.

The trend component b2 if deemed unnecessary maybe deleted from the model.
 Application of the Model

It is applied to a time series displaying multiplicative seasonality and model is apt for a data in
where the amplitude of the seasonal pattern is proportional to the average level of the series.
 Details

This part depicts about the equations used in the model along with the initial values .
 Notation used
Let the current deseasonalized level of the process at the end of period T be denoted by RT.
At the end of a time period t, let
Řt be the estimate of the deseasonalized level.
Ǧt be the estimate of the trend
Ṡt be the estimate of seasonal component (seasonal index)
 Procedure for updating the estimates of model parameters

o Overall Smoothing
Řt= α( yt/ Ṡt−L) + (1 − α) *(Řt-1 + Ǧt-1) (6)
where 0 < α< 1 is a smoothing constant.
Dividing yt by Ṡ t-L, which is the seasonal factor for period T computed one season (L
periods) ago, deseasonalizes the data so that only the trend component and the prior value
of the permanent component enter into the updating process for RT .
o Smoothing of the Trend Factor

Ǧt = β * ( Ṡt− Ṡt-1) + (1 − β) *Ǧt-1 (7)
where 0 < β < 1 is a second smoothing constant.
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The estimate of the trend component is simply the smoothed difference between two
successive estimates of the deseasonalized level.

o Smoothing of the Seasonal Index
Ṡt =  γ (yt/ Ṡt) + (1 −γ ) * Ṡt-L (8)
where 0 < γ < 1 is the third smoothing constant.
The estimate of the seasonal component is a combination of the most recently
observed seasonal factor given by the demand yt divided by the deseasonalized series
level estimate Rt and the previous best seasonal factor estimate for this time period.
Since seasonal factors represent deviations above and below the average, the average
of any L consecutive seasonal factors should always be 1. Thus, after estimating St, it
is good practice to re normalize the LP most recent seasonal factors such that

 Value of Forecast
o Forecast for the Next Period

The forecast for the next period is given by:
yt = (Řt-1 + Ǧt-1) Ṡt-L (9)
Note that the best estimate of the seasonal factor for this time period in the season is
used, which was last updated L periods ago.

o Multiple-step-ahead forecasts (for T < q)
The value of forecast T periods hence is given by:
Yt+T = (Řt-1 + T * Ǧt-1) Ṡt+T-L (10)

 Initial Values of Model Parameters
As a rule of thumb, a minimum of two full seasons (or 2L periods) of historical data is

needed to initialize a set of seasonal factors. Suppose data from m seasons are available and
let ¯xj , j = 1, 2, · · · ,mL denote the average of the observations during the jth season.

o Estimation of Trend Component
Estimate the trend component by:
Ǧ0=( ym – y1)/(m − 1)L (11)

o Estimation of Deseasonalized Level
Estimate the deseasonalized level by:
Ř0 = x1 –(L/2)Ǧ0 (12)

o Estimation of seasonal components
Seasonal factors are computed for each time period t = 1, 2, · · · ,mL as the ratio of
actual observation to the average seasonally adjusted value for that season, further
adjusted by the trend; that is,
Ṡt=xt / (xi − [(L + 1)/2 − j]Ǧ0) (13)
where xi is the average for the season corresponding to the t index, and j is the position
of the the period t within the season. The above equation will produce m estimates of
the seasonal factor for each period.

Ṡt=i/m t = 1, 2, · · · ,L (14)

Ṡt(0) = Ṡt/(L / t = 1, 2, · · · ,L (15)
Additive Seasonal Model

This model is useful when the time-series datashows Additive seasonality.
 Overview

In this model, we assume that the time series is represented by the model
yt = b1 + b2t+ St+ €t (16)
Where
b1 is the base signal also called the permanent component
b2 is a linear trend component
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St is a additive seasonal factor
€t is the random error component
Let the length of the season be L periods.

The seasonal factors are defined so that they sum to the length of the season, i.e.

(17)
The trend component b2 if deemed unnecessary maybe deleted from the model.

 Application of the Model
It is applicable when a time series is displaying additive seasonality and the model is apt for a

data where the amplitude of the seasonal pattern is independent of the average level of the data.
 Details

This part discusses about the forecasting equations used along with the initial values to be used
for the parameters.

 Notation Used
Let the current deseasonalized level of the process at the end of period T be denoted by RT .
At the end of a time period t, let
Rt be the estimate of the deseasonalized level.
Gt be the estimate of the trend
¯St be the estimate of seasonal component (seasonal index)
 Procedure for Updating the Estimates of Model Parameters

o Overall Smoothing
Rt= α(yt −  St-L) + (1 − α) * (Rt-1 + Gt-1) (18)
where 0 < α < 1 is a smoothing constant.
Dividing yt by  St-L, which is the seasonal factor for period T computed one season (L
periods) ago, deseasonalizes the data so that only the trend component and the prior
value of the permanent component enter into the updating process for RT.

o Smoothing of the Trend Factor
Gt = β* ( St −  St-1) + (1 − β) * Gt-1 (19)
where 0 < β< 1 is a second smoothing constant.
The estimate of the trend factor is the smoothed difference between two successive
estimates of the deseasonalized level.

o Seasonal Index Smoothing
St = γ (yt −  St) + (1 −γ ) *  St-L (20)

where 0 <γ  < 1 is the third smoothing constant.
The estimate of the seasonal component is a combination of the most recently
observed seasonal factor given by the demand yt divided by the deseasonalized series
level estimate Rt and the previous best seasonal factor estimate for this time period.
Since seasonal factors represent deviations above and below the average, the average
of any L consecutive seasonal factors should always be 1. Thus, after estimating St, re
normalizing the L most recent seasonal factor is a good practice.

L most recent seasonal factors such that
 Value of Forecast
The next period’s forecast is given by:
yt= Rt-1 + Gt-1 +  St-L (21)
the best estimate of the seasonal factor was last updated L periods ago.

Experimental Results
Variations of the additive and multiplicative exponential smoothing techniques were applied to

some standard time series data, the results of which are discussed in this section.
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 Test Cases
The following tests were carried out:

Multiplicative Model
Two varied models are used:
 Non-adaptive

For establishing the parameters and building the model data of the first two years is used in the
non-adaptive technique. Forecasts are made for the remaining data using these parameters, hence once
initialized, the values of α, β and γ are not modified later. MAPE is used as a criterion for selection of the
parameters.

 As the parameters have been established the forecasting can proceed without any delay in
re-computation of the parameters the parameters are initialized only once.

 Past data need not be remembered is one of its advantage.
 Adaptive

In the adaptive technique, the original parameters are established using the initial first two year’s
data. However, the model keeps updating itself to the changes required in the process. After every two
years the parameters are adjusted. All the new parameters are computed using

 All available data till that point of time or
 k most recent data.
All the past data needs to be stored for the first approach.
 Additive Model
There are two variations of the model used. i.e. Adaptive and Non-Adaptive.
The value of L can vary between 6 and 24 for the unknown value of L

 Summary of Test Results
The test results are presented in this section. The tests were conducted on the following time

series : display, processor, memory, battery and camera.(for mobile phones).
The results obtained from the multiplicative model are better results than those of the additive

model for all the series.
The adaptive multiplicative model gives better results for the series like display as compared to

the non-adaptive multiplicative model, while for series like processor, the non-adaptive multiplicative
model gave better results.

Taking display and processor as examples, the results are summarized below.
 display The results obtained by using Multiplicative Adaptive technique are summarized

inTable1
Table 1: Adaptive Multiplicative Technique for Display

L Look back MAPE
12 24 142.84827
12 δ 129.24403
13 26 113.98809
13 δ 111.99094
15 30 114.87889
15 δ 119.090744
17 34 120.50779
17 δ 115.598305
18 36 120.56211
18 δ 117.90184
23 46 123.13986
23 δ 109.389824

The best result value of MAPE is obtained with an infinite look back for the value of L = 23,
For adaptive technique the MAPE is 109 while for the non-adaptive technique is 10431.5, which

mean that the series is constantly updating. Consequently, the model parameters need to be constantly
updated according to the newer data. Exponential smoothing technique doesn’t appear to be the best
forecasting technique for this data, as the value of MAPE is 109.
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 Display
The multiplicative non-adaptive exponential smoothing technique gave better results as

compared to the adaptive version of the same in this time-series. The value of MAPE obtained was
9.01809 with α= 0.2, β = 0.1 and γ= 0.1.

Multiplicative Adaptive technique on the time series data summary is shown in Table 2.
Table 2: Adaptive Multiplicative Technique for Processor

L Look Back MAPE
10 20 21.62986
10 δ 22.011831
12 24 18.493525
12 δ 18.515306
24 48 17.48018
24 δ 17.722464

The results indicate that the periodic re-evaluation of the parameters is not going to improve the
results. The time series can possess fluctuations. It is possible that new set of parameters are affected by
the fluctuations if the parameters are revaluated periodically.
Conclusion

The triple exponential smoothing is applied for the time-series where both trend and seasonality
is possessed by a given data. The two widely applied models are Additive model for time series
possessing additive seasonality and Multiplicative model for time series possessing Multiplicative
seasonality. Model parameters, α, β and   γ are initialized using the data of the first two years. The error
measure used for selecting the best parameters is MAPE. In the adaptive model technique, these
parameters are recursively updated from the most recent observed data. The main reason behind using
the adaptive technique, instead of non-adaptive technique is that, the time series at some point can
change its behavior and the model parameters must be able to adapt to this change in behavior.

Tests carried out on some standard time series data corroborated this assumption.
The value of L and the Look back size also play has prominent effect in the performance of the

adaptive model; hence these parameters were also varied for forecasting the different time series. It was
observed that the adaptive technique with a larger look back in general improved the results (as
compared to the non-adaptive version). However, adaptive technique with a smaller look back often
performed worse than the non-adaptive technique. This suggests that re-computing the model
parameters based on only few of the most recent observations may be an unnecessary overhead which
may lead to poor performance. Hence, the adaptive technique should be combined with a sufficiently
large look back size in order to obtain good results.
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