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ABSTRACT 
 

In Vitro Fertilization (IVF) is a key assisted reproductive technique designed for individuals facing 
difficulties in natural conception. Due to IVF's complexity, personalized treatment recommendations are 
essential to maximize success rates while considering each patient's unique health profile. This study aims 
to create a machine learning-based, patient-centric Decision Support System (DSS) to optimize IVF 
treatment. By analyzing extensive patient data, including clinical and lifestyle factors, the study employs 
advanced algorithms such as Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), 
Light Gradient Boosting Machine (LightGBM), and Multi-Layer Perceptron (MLP), achieving notable 
prediction accuracies. Light GBM stands out with an accuracy of 84.97%, precision of 86.95%, and recall of 
86.43%, demonstrating its reliability in IVF treatment recommendations. This proposed model not only 
advances decision-making in IVF treatments but also promotes a personalized, data-driven approach, 
offering clinicians accurate, consistent insights into each patient’s IVF needs, which can significantly 
improve treatment outcomes. Future work includes enhancing model robustness across diverse 
populations. 
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Introduction 

 IVF is a pivotal assisted reproductive technology widely used for individuals facing challenges in 
conceiving naturally [1]. As one of the most complex processes in fertility treatment, IVF involves multiple 
carefully monitored steps, starting with ovarian stimulation, followed by oocyte maturation, egg retrieval, 
fertilization, and embryo transfer. Each step requires precise clinical assessment and meticulous 
execution to maximize the chances of a successful pregnancy[2,3]. Given the physical, emotional, and 
financial commitments associated with IVF, patient-centered approaches have gained importance, 
emphasizing the need for personalized treatment plans tailored to each individual [4,5]. Therefore, 
optimizing IVF treatment recommendations is essential not only for improving success rates but also for 
providing a holistic experience that addresses each patient’s unique physiological and psychological 
profile. This patient-focused approach can enhance outcomes and support patients through the 
challenges of the IVF journey [6].Figure 1 illustrates the step-by-step process of IVF, from consultation 
through to pregnancy testing. 
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Figure 1: Stages of In vitro Fertilization Procedure [7] 

 The emergence of Machine Learning (ML) in healthcare has paved the way for innovative 
solutions that can improve clinical decision-making and personalized care, especially in fertility 
treatments [8]. ML algorithms, with their ability to process vast amounts of patient data and identify 
complex patterns, offer an unprecedented opportunity to develop highly individualized treatment 
recommendations in IVF[9,10]. By analyzing historical data, these models can uncover subtle 
correlations and predict patient responses to different treatment protocols, ultimately leading to more 
informed and accurate recommendations [11]. Advanced ML techniques, such as deep learning and 
ensemble methods, go beyond traditional statistical approaches, providing granular insights that could 
significantly refine IVF treatment personalization and success rates [12]. 

However, current IVF treatment recommendations often rely on subjective factors and general 
clinical guidelines, which might not fully account for the unique characteristics of each patient [13]. 
Traditional methods frequently lack consistency, as treatment decisions can vary considerably among 
clinicians based on individual expertise and experience [14]. This variability can lead to disparate 
outcomes and does not align with the precision required for patient-centric healthcare. Moreover, 
traditional approaches might overlook individual differences, such as genetic markers, lifestyle factors, 
and hormonal variations, which are essential for predicting responses to IVF protocols [15,16]. 

 In light of these limitations, there is an increasing need for a patient-centric decision-support 
model driven by advanced machine learning to assist clinicians in recommending the most suitable IVF 
treatments [17]. Such a model could integrate multi-dimensional patient data, including clinical, genetic, 
and lifestyle factors, to create a personalized profile for each individual undergoing IVF [18]. By 
leveraging ML algorithms, this approach would provide clinicians with data-driven insights that go beyond 
conventional recommendations, facilitating more accurate, consistent, and tailored IVF treatment 
strategies. Ultimately, this ML-based decision support model would not only enhance IVF success rates 
but also promote a more empathetic, patient-centered approach to fertility care, improving both the 
experience and outcomes for patients seeking fertility assistance [19,20]. 

 This research aims to design and evaluate an MLbased decision support model that can 
optimize patient outcomes in IVF treatment by providing personalized, data-driven recommendations for 
treatment protocols. 
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 The scope of this research involves the design and evaluation of an advanced ML based 
patient-centric decision support model for IVF treatment. It covers the integration of patient data, 
algorithmic model development, optimization of treatment recommendations, and assessment of clinical 
outcomes, aiming to improve IVF success rates and personalization. 

 The significance of this research lies in developing an advanced ML based decision support 
model to optimize IVF treatment recommendations, enhancing personalized care and improving success 
rates. By leveraging patient-specific data, this model aims to assist clinicians in providing more accurate, 
efficient, and individualized IVF treatments, promoting better patient outcomes. 

 This research has the following contributions: 

• This research contributes to the development of an advanced machine learning-based patient-
centric decision support model for optimizing IVF treatment recommendations, enhancing 
personalized care and improving IVF success rates.   

• The research applies advanced machine learning techniques to predict IVF treatment outcomes, 
improving the precision of success rate estimations and reducing variability in clinical 
recommendations.   

• The study addresses the limitations of traditional IVF treatment methods by reducing subjectivity 
and providing a data-driven approach to optimize treatment protocols for each patient.   

• The model is rigorously evaluated for clinical effectiveness, ensuring that it offers reliable and 
actionable insights that enhance IVF treatment recommendations and decision-making 
processes. 

 Section 1 of this research presents an overview of the subject matter. Section 2 delineates the 
pertinent contributions of numerous researchers. Section 3 delineates the proposed methodology. 
Section 4 outlines the result based on the proposed methodology. Section 5 describes the Conclusion 
and Future Scope. 

Review of Literature 

 This section presents a comprehensive review of related studies by various authors focused on 
Designing an Advanced Machine Learning-Based Patient-Centric Decision Support model for Optimized 
IVF Treatment Recommendation. 

Yao et al., (2024) [21] analyzed the rates of IVF utilization associated with prognostic reports 
based on machine learning during pre-treatment counseling. A retrospective cohort analysis was 
performed with 24,238 patients from seven reproductive institutions in the United States and Ontario, 
Canada. The findings indicated that the utilization of the Univfy report correlated with an increased direct 
IVF conversion, evidenced by odds ratios of 3.13, 2.89, and 2.04 for the 180-day, 360-day, and Ever 
analyses, respectively. The overall conversion rates for IVF, regardless of priorIntra-Uterine 
Insemination(IUI), demonstrated odds ratios of 3.41, 3.81, and 2.78, all of which were statistically 
significant (p < 0.05). 

 Khan et al., (2024) [22]employed sophisticated machine learning approaches to create an 
innovative technique for forecasting female infertility. A comprehensive analysis was performed on a 
dataset containing medical attributes related to reproductive health, utilizing logistic regression, Naive 
Bayes, Support Vector Machines (SVM), and Random Forest algorithms. The Random Forest algorithm 
demonstrated a remarkable accuracy rate of 93%. The results indicated that this model has potential 
applications for early infertility diagnosis and tailored treatment suggestions in the future. 

 Rathinaeaswar and Santhi (2023)[23]introduced an Efficient and Privacy-Preserving Patient-
centric Clinical Decision Support System (EPPCD) aimed at assisting clinicians in predicting patient 
illness risks while maintaining privacy protection. This technology was designed to address the privacy 
challenges inherent in theClinical Decision Support System(CDSS). The suggested system stores 
historical data of prior patients in the cloud, which could be utilized to develop the hybrid Rotation Forest 
and AdaBoost classifier.The findings indicated that the suggested RandRotBoost attained a 95% F1 
Score, surpassing the performance of alternative approaches. 

 Niraula et al., (2022) [24]developedan AI-driven decision-making framework to support 
oncologists in Decision-Theoretic Radiotherapy (DTR). The framework, known as Adaptive Radiotherapy 
Clinical Decision Support (ARCliDS), consisted of two components: Artificial RT Environment (ARTE) and 
Optimal Decision Maker (ODM). The structure of ARTE was designed as a Markov decision process 
utilizing supervised learning, while a dual Graph Neural Network (GNN) architecture was implemented to 
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correct unphysical dose-response trends. The framework led to improved clinical decisions, resulting in 
36% and 50% favorable clinical outcomes for NSCLC and HCC, respectively, and enhanced 74% and 
30% of previously suboptimal decisions. 

 Xi et al., (2021) [25]customized embryo selection strategy and a pregnancy prediction model 
were created using a stacked machine learning approach. The hierarchical model, constructed with 
eXtreme Gradient Boosting (XGBoost), was designed to assess embryo implantation potential alongside 
the concurrent effects of Double Embryo Transfer (DET). Analysis using multiple regression on 19 
chosen features revealed variations between the significance of prediction features and their statistical 
associations with outcomes. After the completion of 30 experimental iterations, the model produced 
average Area Under the Curves (AUCs) of 0.79 for Single Embryo Transfer (SET) pregnancy, 0.83 for 
DET pregnancy, and 0.72 for the risk of DET twins, indicated that XGBoost outperformed both logistic 
regression and classification and regression tree models. 

 Li et al. (2021)[26]developed and validated a predictive model for assessing clinical pregnancy 
failure in Poor Ovarian Responders (PORs) during IVF procedures. Researchers analyzed data from 281 
patients with POR, divided into a training set (179 patients) and a validation set (102 patients). They 
identified factors like age over 35, BMI above 24 kg/m², elevated basal Follicle-Stimulating Hormone 
(FSH), and fewer than two high-quality embryos as significant predictors of pregnancy failure. The study 
employed logistic regression to develop a nomogram that demonstrated robust predictive accuracy, 
achieving an AUC of 0.786 in the group receiving training and 0.748 in the set used for validation. 

 Hassan et al., (2020) [27]designed a hill-climbing feature selection approach combined with 
automated classification employing machine learning techniques to enhance the accuracy of IVF 
pregnancy forecasts. An assessment was performed utilizing 25 characteristics to evaluate the prediction 
capabilities of five machine learning models: MLP, SVM, C4.5, Classification and Regression Trees 
(CART), and Random Forests (RF). The feature selection method resulted in a reduction of significant 
attributes, producing 19 for MLP, 16 for RF, 17 for SVM, 12 for C4.5, and 8 for CART. The results 
indicated that incorporating hill-climbing feature selection with classifiers like SVM, MLP, or RF improved 
predictive performance, offering significant insights for practitioners assessing IVF outcomes. 

 Qiu et al., (2019)[28]developed a predictive model employing ML techniques to evaluate the 
likelihood of live birth before the initiation of the first IVF operation. Retrospective clinical data were 
acquired from 7,188 women who underwent their initial IVF treatment. Nested cross-validation was 
employed to achieve an impartial assessment of the adaption efficacy of the ML algorithms. The 
XGBoost model attained an area under the Receiver Operating Characteristic (ROC) curve of 0.73 on the 
dataset used for validation and demonstrated superior calibration relative to other machine learning 
techniques. 

Research Methodology 

 This study provides a comprehensive examination of the employed strategy, detailing the 
dataset, methods and the recommendation approach as follows: 

• Dataset Description 

 This study uses a primary dataset of 850 responses organized in an Excel file. Each entry 
provides essential information for developing an IVF treatment recommendation model, including name, 
contact, age group (under 35, 35-40, over 45), fertility, and medical history. Key data include fertility 
attempts, reproductive issues, health metrics, and past conditions like hypertension or diabetes. It also 
covers ovarian reserve, uterine health, interest in genetic analysis, embryo transfer history, and 
outcomes. This comprehensive dataset supports the development of precise ML algorithms, ensuring 
personalized IVF recommendations based on diverse, relevant data. 

• Techniques Used 

 This section delineates the procedures employed, encompassing data preparation, feature 
extraction and selection, and evaluation of the machine learning model's performance, as follows: 

• Principal Component Analysis (PCA) 

 Feature extraction is essential in pattern recognition and data analysis, focusing on selecting 
relevant attributes from original data to reduce training time and simplify space complexity, thereby 
achieving dimensionality reduction. This process transforms input data into a condensed attribute set that 
retains significant details from the original dataset [29,30]. PCA is a robust technique for identifying 
patterns in high-dimensional data and extracting relevant features [31]. In PCA, components are 
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arranged by variance, with the first few components capturing the most variability. Strong correlations 
among original components further reduce input dimensions, retaining only the key components with the 
highest variance [32]. Figure 2 illustrates the diagrammatic representation of PCA. 

 

Figure 2: PCA [33] 

• Recursive Feature Elimination (RFE) 

 Feature selection is crucial for identifying relevant attributes across various fields [34]. RFEis a 
widely used method that selects optimal features based on model learning and classification accuracy. In 
large datasets, irrelevant features can hinder classification efficiency and accuracy [35]. RFE mitigates 
this by iteratively ranking and removing less important features, preserving those essential for accurate 
predictions. This approach reduces dimensionality while retaining key characteristics, enhancing both 
model performance and interpretability [36]. Using ML classifiers, RFE refines the feature set, 
continuously retraining until an optimal subset is achieved. Figure 3 illustrates the RFE workflow. In this 
methodology, RFE is utilized to identify pertinent features, enhancing both the accuracy and clarity of the 
suggested treatment recommendation models. 
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Figure 3: The working architecture of the RFE algorithm [37] 

• CNN 

 CNNs use spectral layers to effectively capture both low- and high-level information, making 
them highly efficient for statistical forecasting and complex modeling tasks. Key principles like local filters, 
max-pooling, and weight distribution enhance CNNs’ effectiveness over traditional Deep Neural Networks 
(DNNs). The CNN architecture used for treatment prediction, shown in Figure4, includes multiple 
convolutional and max-pooling layers, with pooling layers following each convolutional layer to improve 
variability handling [38,39]. Max-pooling is commonly applied in the frequency domain, yielding robust 
results. Fully connected layers then combine inputs into a one-dimensional feature vector, followed by a 
SoftMax activation layer for final classification [40]. 
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Figure 4: CNN [41] 

• LSTM 

 The LSTM model is a powerful Recurrent Neural Network (RNN) designed to manage 
sequential data, making it ideal for patient-centric decision support in IVF treatment [42]. By retaining 
information across long sequences, LSTM captures essential patterns in patient histories, including 
previous treatment cycles and health metrics [43]. This enables precise, personalized recommendations 
by identifying trends crucial to treatment success. Through advanced mechanisms like attention layers, 
the model can emphasize significant data points, improving accuracy in forecasting optimal IVF treatment 
paths and ultimately enhancing success rates tailored to individual patient profiles [44]. 

• LightGBM 

 LightGBM, a gradient-boosting framework, is effective in handling large-scale, high-dimensional 
data, making it suitable for patient-centric decision support in IVF treatment [45]. By leveraging decision 
tree-based learning, LightGBM captures complex interactions among patient health metrics, prior 
treatments, and outcomes. Its efficiency and speed in training allow rapid model tuning, ensuring 
optimized predictions for treatment recommendations [46]. LightGBM's ability to handle categorical and 
continuous features enhances its accuracy, making it adept at predicting IVF success rates by identifying 
key factors in patient data. This ultimately enables precise, personalized IVF treatment pathways tailored 
to individual patient profiles [47]. 
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• MLP 

 The MLP model, a type of feedforward neural network, is applied to create a patient-centric 
DSSfor optimized IVF treatment recommendations [48]. MLP effectively captures complex, non-linear 
relationships within patient data by processing multiple layers of nodes [49]. In this context, it learns from 
diverse patient metricssuch as age, hormone levels, and treatment historyto predict success rates and 
recommend personalized treatment paths. Through backpropagation, MLP optimizes its weight 
structures, allowing it to make accurate recommendations by focusing on key patient features that impact 
IVF outcomes, thus improving decision-making for tailored treatment plans [50]. 

• Proposed Methodology 

 The suggested methodology for creating a model to prescribe IVF treatment encompasses 
several essential elements. Figure 5 delineates a systematic methodology for data management, model 
training, and assessment, culminating in precise treatment recommendations. This technique delineates 
a concise and unambiguous method for suggesting IVF treatment. The following are the essential phases 
outlining the suggested methodology:  

Step 1.  Gathering Data 

• Collect Embryo Information: Start by gathering all the necessary details about embryos. This 
information is crucial as it would be used to build and evaluate the model. 

Step 2.  Data preprocessing 

• Clean the Data: Remove any mistakes or missing information from the dataset to ensure 
everything is accurate and reliable. 

• Standardize the Data: Adjust the data so that all information is on the same scale. This helps 
the model treat each factor equally during analysis. 

Step 3.  Features engineering 

• Simplify the Data with PCA: Use PCA to reduce the number of variables by combining related 
ones. This makes the data easier to work with without losing important information. 

• Select Key Features with RFE: Apply RFE to pick out the most important factors. This step 
ensures that only the most relevant information is used for making predictions. 

Step 4.  Splitting the Data 

• Divide into Training and Testing Sets: Split the pre-processed data into two parts. One part is 
used for the learning of the model (training), and the other is used to check how well the model 
works (testing). 

Step 5.  Building the Model 

• Create Different Models: Develop several types of machine learning models, such as LSTM, 
CNN, LightGBM, and MLP. Each model has its strengths for predicting whether IVF is needed. 

Step 6.  Training the Model 

• Train the Models: Use the training data to help each model learn how to make accurate 
predictions. Adjust the models to reduce any errors in their predictions. 

Step 7.  Evaluating the Model 

• Test the Models: Use the testing data to see how well each model performs. Compare their 
results to find out which model is the most reliable and accurate. 

Step 8.  Making Recommendations 

• Provide IVF Advice: Use the best-performing model to decide whether IVF treatment is 
necessary based on the input data. This helps doctors make informed decisions for their 
patients. 
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Figure 5: Proposed Methodology 
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• Proposed Algorithm 

Algorithm: Treatment recommendation model 

Start 

Step 1: Data Collection 

Collect the embryo dataset, denoted as D. 

Step 2: Data Preprocessing 

• Data Cleaning  

Removing unrelated or noisy data. 

• Data Normalization 

Normalize the data to ensure consistency and increase the performance of the models. 

𝑥 ′ =
𝑥 −min(𝑥)

max(𝑥) − min(𝑥)
 

 Where x represents the initial data point, min(x) represents the least values in the entire 
data set, and max(x) represents the highest value in the data set. 

Step 3: Feature Engineering 

• Feature Extraction using PCA 

Z = XWZ 

 X represents the data matrix, W represents a matrix of eigenvalues, and Z represents the 
matrices of main elements. 

3.2 Feature Selection using RFE:  

𝑅𝐸𝐹(𝑋, 𝑦) = 𝑎𝑟𝑔min
𝑠⊆𝑋

∑(𝑦𝑖 − �̂�𝑖)
2

𝑛

𝑖

 

X is the feature, y represents the target variable, and �̂�𝑖 represents predicted value. 

Step 4: Data Splitting 

Split the dataset into training and testing datasets:  

(𝑋𝑡𝑟𝑎𝑖𝑛, 𝑦𝑡𝑟𝑎𝑖𝑛), (𝑋𝑡𝑒𝑠𝑡 , 𝑦𝑡𝑒𝑠𝑡) 

Where X and y are the features and labels, respectively. 

Step 5: Model Building 

Develop multiple models using different algorithms: 

• LSTM Model 

 Forget gate :𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

 Cell state :𝑐𝑡 = 𝑓𝑡 ⨀𝑐𝑡−1 + 𝑖𝑡⨀�̃�𝑡 

 Output gate :ℎ𝑡 = 𝑜𝑡 tan ℎ 𝑐𝑡 

• CNN Model 

 Convolutional layers: 𝑐𝑜𝑛𝑣(𝑥,𝑊, 𝑏) = 𝑅𝑒𝐿𝑈(𝑊 ∗ 𝑥 + 𝑏) 

 Max- Pooling layers: 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑥) = 𝑚𝑎𝑥(𝑥) 

 Fully Connected layers: FC(𝑥,𝑊, 𝑏) = 𝑅𝑒𝐿𝑈(𝑊 ∗ 𝑥 + 𝑏) 

 SoftMax Output layers: S𝑜𝑓𝑡𝑀𝑎𝑥(𝑥𝑖) =
𝑒𝑥𝑖

∑𝑗𝑒
𝑥𝑗

 

• LightGBM Model 

 Gradient Boosting framework with decision trees as base learners.  

Objective function:𝑦𝑖 = 𝑓(𝑋𝑖) + 𝜀𝑖 

 Where f is the learned function, 𝑋𝑖 is the input features and 𝜀𝑖 is the error term. 

Binary Cross-Entropy Loss = −
1

𝑁
∑ [𝑦𝑖 log(𝑝𝑖) + (1 − 𝑦𝑖)log(1 − 𝑝𝑖)]
𝑁
𝑖=1  
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where 𝑦𝑖 is the true label and 𝑝𝑖 is the estimated probability. 

• MLP model 

Dense Layer 

𝐷𝑒𝑛𝑠𝑒(𝑥) = 𝑅𝑒𝐿𝑈(𝑊 ∙ 𝑥 + 𝑏) 

Output Layer 

𝑂𝑢𝑡𝑝𝑢𝑡(𝑥) = 𝜎(𝑊 ∙ 𝑥 + 𝑏) 

Step 6: Model Training 

Train each model using the training dataset. 

𝜃∗ = 𝑎𝑟𝑔min
𝜃

ℒ(𝑦, �̂�) 

 Where ℒ represents loss function, y represents true value, �̂�refers to the predicted value, 

and 𝜃 is the model parameters. 

Step 7: Model Evaluation 

 Evaluate the performance of each model using the testing dataset 

𝐴𝑐𝑐𝑢𝑎𝑟𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹1𝑆𝑐𝑜𝑟𝑒 =
2 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Step 8: Treatment Recommendation 

 Based on the evaluation results, recommend whether IVF treatment is required or not. 

End  

 

Results and Discussion 

 This section examines the results of IVF treatment prediction models, including LSTM, CNN, 
LightGBM, and MLP. The effectiveness of the ML model is evaluated using key indicators that illustrate 
the algorithm's capacity to forecast the necessity for IVF treatment. The merits and drawbacks of each 
model are analyzed, and a comparative study is provided to determine the most successful model for IVF 
treatment recommendations. The discourse delineates the distinctions among several models and 
provides recommendations for those that have enhanced efficacy in predicting IVF treatment results. 

• Results based on LSTM 

 The IVF treatment recommendation system's LSTM model outperformed expectations across all 
relevant performance parameters. About three-quarters of the patients were properly predicted by the 
algorithm as requiring IVF therapy, with an accuracy rate of 74.51%. As shown in Figure 6, the model's 
recommendation of IVF therapy was accurate in the vast majority of cases 78.23% precision, reducing 
the number of false positives.  
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Figure 6: Performance of the LSTM model 

 Moreover, the recall score of 79.13% indicates the efficacy of LSTM in identifying genuine 
instances of IVF therapy, assuring minimal loss of true positive cases. The F1 score of 75.27% 
demonstrates a balance between precision and recall, indicating the model's ability to minimize false 
positives while effectively identifying pertinent cases. 

• Results based on Light GBM 

 The LightGBM model illustrated outstanding efficacy in forecasting the requirement for IVF 
therapy, achieving an accuracy of 84.97%. This elevated degree of accuracy signifies that the model 
consistently recognizes instances for IVF intervention, which is vital in a medical context where precise 
predictions are imperative. The precision of 86.95% indicates that most patients identified as requiring 
IVF treatment were accurate, hence reducing false positives, as illustrated in Figure 7. This precision is 
essential in medical environments, as it ensures that patients are not exposed to excessive treatments, 
thus alleviating anxiety and mitigating any health hazards linked to unneeded operations. 

 

Figure 7: Performance of Light GBM Model 
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 Furthermore, with an 86.43% recall, the model can reliably identify most positive cases, 
ensuring that only those who need IVF are identified. This strong recall helps patients by enabling timely 
therapies. Precision and recall are combined in the 82.74% F1 score, highlighting the balanced 
performance. In clinical applications, this balance shows the model's capacity to avoid false positives and 
negatives. The results show that LightGBM is a reliable IVF treatment prediction tool that aids clinical 
decision-making. 

• Results based on CNN 

 The outcomes of the CNN model for forecasting IVF treatment needs are illustrated through 
essential metrics, demonstrating robust performance across all parameters. The model demonstrated an 
accuracy of 75.89%, suggesting that it accurately identified the need for IVF treatment in approximately 
76% of cases. The accuracy of 77.41% indicates its capability to generate accurate positive predictions, 
signifying that a considerable percentage of the cases designated for IVF treatment were genuinely 
warranted, hence reducing false positives, as illustrated in Figure 8. 

 

Figure 8: Performance of CNN model 

 CNN exhibits a recall score of 77.23%, indicating its ability to accurately identify the majority of 
genuine positive instances, hence ensuring that most persons in need of IVF treatment are correctly 
recognized. The F1-score of 76.61% highlighted the model's reliability in minimizing prediction mistakes 
while effectively identifying pertinent cases. 

• Results based on MLP 

 The MLP model's results for predicting IVF treatment outcomes demonstrate consistent 
reliability across all assessed measures. The model attained an accuracy of 81.54%, as illustrated in 
Figure 9, indicating that it correctly identified the majority of instances, effectively forecasting the 
necessity of IVF therapy. The precision of 80.12% indicates that the model accurately identified IVF 
treatment requirements with a commendable degree of specificity, hence minimizing the incidence of 
false positives in treatment recommendations. The recall of 79.8% demonstrates the model's efficacy in 
identifying genuine positive instances, hence recognizing individuals who genuinely needed IVF 
treatment. This demonstrates the MLP's efficacy in identifying the most pertinent examples, however, 
there remains potential for enhancement in sensitivity. 
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Figure 9: Performance of MLP Model 

 Additionally, the F1-score, integrating both precision and recall, stands at 79.36%. This 
demonstrates that the MLP model has successfully struck a noteworthy balance between reducing 
unnecessary recommendations and accurately pinpointing individuals in need of IVF therapy. The MLP 
model demonstrates dependable performance, effectively balancing accurate predictions and error 
reduction, exhibiting somewhat superior accuracy relative to precision and recall. 

• Comparative Analysis 

 The comparative analysis of the four models, LSTM, CNN, LightGBM, and MLP,identifies 
LightGBM as the superior performer, demonstrating excellence across all essential criteria for predicting 
IVF treatment results. LightGBM attains the best accuracy at 84.97%, precision at 86.95%, recall 
at 86.43%, and F1-score at 82.74%, indicating its exceptional capacity for accurate prediction, minimizing 
false positives, and maintaining a balance between precision and recall, so establishing it as the most 
dependable model. MLP demonstrates commendable performance, achieving an accuracy of 81.54%, 
precision of 80.12%, recall of 79.80%, and an F1-score of 79.36%, indicating it as a robust alternative 
with a commendable equilibrium between accuracy and true positive identification. Table 1 delineates the 
comparative efficacy of each procedure for IVF recommendations. 

Table 1: Comparative performance of each model 

Model Recall F1-Score Precision Accuracy 

LSTM 79.13 75.27 78.23 74.51 

CNN 77.23 76.61 77.41 75.89 

LightGBM 86.43 82.74 86.95 84.97 

MLP 79.8 79.36 80.12 81.54 
 

 CNN demonstrates moderate performance with an accuracy of 75.89%, precision of 77.41%, 
recall of 77.23%, and an F1-score of 76.61%. While it demonstrates proficiency in managing intricate 
data, it falls short of the efficacy exhibited by LightGBM or MLP, highlighting its constraints in precision 
and recall, as illustrated in Figure 10. 
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Figure 10: Comparative Analysis of Proposed Approaches 

Conclusion and Future Scope 

 IVF is a crucial assisted reproductive technology intended for persons encountering difficulties 
with natural conception. The intricate nature of IVF necessitates individualized, data-driven strategies to 
improve treatment precision and success rates. This research aims to create a Machine Learning-driven 
Patient-Centric DSS that customizes IVF treatment recommendations according to each patient's distinct 
clinical and personal characteristics. To accomplish this, several sophisticated machine learning models 
are assessed, including LSTM, CNN, LightGBM, and MLP. The proposed model employs a systematic 
methodology that includes data collection, preprocessing, feature selection via PCA and RFE, model 
training, evaluation, and the formulation of therapy recommendations. Among the evaluated models, 
LightGBM has the greatest efficacy, with an accuracy of 84.97%, precision of 86.95%, and recall of 
86.43%. Future study aims to improve the model's applicability among varied patient populations.  
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