

Intelligent Learning: How AI is Transforming Student Outcomes at School Level

Suman Gill^{1*} | Suman Goyat² | Monika Saini³

¹Research Scholar World College of Technology and Management, Gurgaon, Haryana, India.

²Assistant Professor JK Business School, Gurgaon, Haryana, India.

³HOD of CSE department, World College of Technology and Management, Gurgaon, Haryana, India.

*Corresponding Author: sonugill88@gmail.com

ABSTRACT

Education is an important part of human life, and quality of education plays an important role in a successful life. If we want to improve the education system for students, a huge number of changes are taking place all over the world, from changes in teaching patterns to curriculum. Artificial Intelligence (AI) is a very technological device that is used in various fields and is changing the thought of everyone all over the world. One of them is in the field of education. The purpose of this research paper is to critically assess the impact of AI on education, examining its applications in various academic settings, from primary education to higher education and corporate training. The study highlights AI's benefits, including personalized learning paths, automation of grading and administrative processes, intelligent tutoring systems and the use of predictive analytics to improve student performance. Furthermore, this paper explores the challenges that face with AI integration in education, such as ethical concerns, data security and the need for proper training among educators to effectively utilize AI-powered systems. Artificial intelligence (AI) in education provides new teaching and learning solutions for various solutions. Nowadays, various schools or educational institutions are using AI technology to improve teaching and learning. Artificial intelligence is not about replacing teachers with robots but about using an intelligence system to help teachers, students to improve and streamline the education system.

Keywords: AI in Classrooms, Virtual Learning, Learning Analytics, Automation in Education, Smart Content Development, AI-Powered Assessment.

Introduction

The education sector has been changing day by day over the past few decades, with technological advancements that redefine how knowledge is delivered and absorbed. From traditional classroom-based learning to digital and remote education, the integration of Artificial Intelligence (AI) has become a revolutionary development, impacting sectors such as teaching, healthcare and many more. AI has the potential to address key educational challenges, offering solutions that enhance learning efficiency, accessibility, and customization.

AI-powered tools and applications are redefining the role of educators by automating administrative tasks, providing personalized learning experiences, and generating real-time insights through data-driven analytics. AI-driven systems can analyze students' strengths and weaknesses, adapt learning materials to individual needs, and deliver interactive content that keeps learners engaged. Moreover, AI enhances the teaching process by allowing educators to focus on creativity, mentorship, and student development rather than administrative duties.

The purpose of (Chen, L 2020) paper written by author is to analyse the impact of AI on education, examining its applications in various academic settings, from primary education to higher education and corporate training. The study highlights AI's benefits, including personalized learning paths, automation of grading and administrative processes, intelligent tutoring systems, and the use of predictive analytics to improve student performance. Furthermore, this paper explores the challenges

associated with AI integration in education, such as ethical concerns, data security, and the need for training among educators to effectively utilize AI-powered systems (Tripathi, S., Rosak, J. (2024)).

As we can see AI become popular day by day, its role in shaping the future of education is becoming increasingly evident. The emergence of smart learning environments, AI-based content recommendation systems, and virtual reality (VR)-enabled immersive learning experiences are paving the way for a more adaptive and inclusive education system. However, ensuring responsible AI implementation, addressing biases in AI algorithms, and maintaining a balance between human-led instruction and AI-driven automation remain crucial considerations for educators, policymakers, and institutions.

This paper provides a comprehensive analysis of AI's role in education, offering insights into its transformative potential while critically evaluating the opportunities and limitations associated with its adoption. By fostering a balanced approach that combines AI's technological advancements with the irreplaceable value of human educators, the future of education can be made more efficient, engaging and inclusive.

The education sector has witnessed profound changes over the years, with advancements in technology influencing teaching methodologies, curriculum design, and learning experiences. AI, a transformative technology, is increasingly being incorporated into education, offering new possibilities for personalized learning, intelligent automation, and data-driven insights. The purpose of this study is to evaluate the outcome of AI in education, stressing its applications, benefits, challenges, and future needs.

AI is redefining the old approach to education by providing real-time assistance to students, reducing manual efforts, that can enable educators to focus on creative and interactive teaching. By integration of AI has led to the emergence of smart learning environments, where students receive customized support tailored to their individual learning styles and progress.

Method

This research employs a library research approach, which emphasizes the examining the existing sources and data by using on established frameworks and concepts. The interpretation is based on scholarly writings that contribute to the discussion (Sachin, 2024). In this context, the research problem can only be addressed through library research, and field research is not applicable (Zed, 2023).

Data collection in this study is conducted through document analysis. When the required data to address the research problem are sourced from documents or library materials, this process is referred to as document-based data collection (suman, 2024). The documents utilized in this research include written materials, photographs, images, and electronic records that support the study. Examples of such documents include books and journal articles, both national and international, that are relevant to the research topic.

The data analysis process follows several key steps: compiling relevant information from books and journals, conducting content analysis of textual and visual data, and drawing conclusions based on the findings.

Findings

Artificial intelligence has been widely applied to various educational technology platforms as follow:

- **Virtual Mentor**

AI has been increasingly used into various educational technology platforms, most commonly used in education that in online learning experiences. One most important approach is **Virtual Mentor**, which behaves as like human mentor. In this AI supports learners by offering guidance, personalized learning recommendations and feedback as well as helping them to get their educational goals. This mirrors the standard mentoring process where an experienced individual assist a learner's professional development.

According to Zhang (2016), **Virtual Mentor (VM)** is intelligent multimedia-based e-Learning environment that highlights interaction, adaptive learning, personalization approach.

The most common example is Blackboard (<https://www.blackboard.com/teaching-learning/learningmanagement/mobile-learning-solutions>) which is an approach that is widely implemented in universities in Europe and America. This AI tool is helping educators/ professors/lecturers to share notes/assignments, course materials, papers, and tests that helps students to ask questions and

interactive assessments. This application can help the reasons behind students' misconceptions, can diagnose learning gaps and can offer solutions that have been provided by the lecturer and provide feedback to students that help address their challenges efficiently and effectively.

The concept of Blackboard is based on standard whiteboard that is used in each classroom and meeting rooms. Blackboards in learning become the important channel that transfer instructional information/contect from the teacher to students and is also a placeholder for exchanging ideas, discussions, engaging in problem-solving and new insights to generate. Blackboard A performs similar way by facilitating new solutions and issue resolution in a Holistic and collaborative approach. AI can offers feedback on student learning activities and practice questions, provide guidance for notes that needs to be further reviewed like a teacher or tutor.

Hwang & Vrongistinos (2012) stress on the integration of Blackboard with Skype to create an electronic mentorship framework, greatly supporting new teachers by improving their instructional and classroom management skills, particularly for English language learners (ELLs) in Southern California.

- **Voice Assistant**

Voice Assistant technology shares similarities with virtual mentors but primarily relies on voice interaction. These AI-driven assistants leverage cloud computing and natural language processing (NLP) to facilitate seamless communication (Terzopoulos & Satratzemi, 2019). Voice Assistants helps students to search for study materials/notes, reference questions, and books by only using voice commands.

Notable examples include Google Assistant, Siri (Apple), and Cortana (Microsoft). These assistants retrieve and present information through text, images, or spoken explanations, mimicking the functionality of a personal tutor. Canbek & Mutlu (2016) emphasize that Intelligent Personal Assistants (IPAs) facilitate human-computer interaction through natural language processing, advancing digital learning experiences.

- **Smart Content**

Smart Content technology streamlines access to digital educational materials by categorizing and recommending relevant resources efficiently. AI-driven platforms optimize digital libraries, enabling users to locate materials swiftly.

- **Cram101:** This online service utilizes AI to dissect digital textbooks into structured components, including chapter summaries and practice tests. Subscriptions to this service provide users with concise and organized study materials (Jain & Alam, 2020).
- **Netex Learning:** This AI-powered platform offers a cloud-based solution for personalized virtual training and educational content. It recommends multimedia resources, including books and training modules, tailored to users' learning needs.

- **Presentation Translator**

AI facilitates knowledge-sharing globally through real-time translation technologies. Presentation Translator, an AI-driven speech recognition tool, converts spoken content into subtitles, allowing students to comprehend course materials in their native language. This technology is proves advantageous for students with language challenges or visual disabilities, supporting accessible learning experiences.

Additionally, AI-based voice control and speech-to-text functionalities are integrated into various applications, reducing the reliance on manual text input and enhancing accessibility.

- **Global Courses**

AI technology enables access to global education platforms, offering students the opportunity to enroll in online courses worldwide. AI-powered course platforms personalize learning experiences by recommending courses based on students' interests and learning patterns.

Prominent platforms incorporating AI include MOOCs, Udemy, Google AI, Alison, Khan Academy, edX, Udacity, and Coursera (Zhang, 2021). AI-driven personalization features notify students about course progress, recommend relevant study materials, and facilitate adaptive learning experiences tailored to individual needs.

- **Automatic Assessment**

AI simplifies the assessment process by automating quiz creation, grading, and feedback. Platforms such as Kejarcita (<https://kejarcita.id/>) provide AI-driven assessment tools, allowing educators to design quizzes based on subject type, difficulty level, and other criteria.

AI-based assessment tools alleviate administrative burdens on educators by handling repetitive tasks such as grading and progress tracking, enabling teachers to focus on instructional quality (Bin & Mandal, 2019). AI-driven insights also offer recommendations for additional study materials based on student performance.

- **Personalized Learning**

AI-powered personalized learning platforms enhance educational experiences by adapting content to students' individual needs. These platforms analyze students' learning habits and recommend study plans, optimizing learning efficiency (Mufdalifah, 2017).

Notable platforms incorporating AI-based personalized learning include Khan Academy, Duolingo, and Ruangguru. AI systems track progress, suggest study schedules, and provide tailored content, ensuring that students receive targeted support while maintaining human instructors' critical role in emotional and ethical aspects of learning.

- **Educational Games**

Educational games integrate AI to provide engaging and effective learning experiences. These games utilize gamification principles to enhance retention and skill development.

Examples include:

- **Duolingo** – Offers gamified language learning in over 30 languages. With the help of this anyone can learn basic language that can help in communication. Eg. We can learn German basic level or expert that can help in A1/A2 paper or more.
- **Khan Academy Kids** – Provides interactive activities for early childhood education.
- **Quick Brain** – Enhances mental arithmetic and cognitive speed.
- **Puzzle Kids** – Develops problem-solving and logical reasoning skills.

AI algorithms regulate game behaviour to maintain player engagement and dynamically adjust difficulty levels (Haryanto et al., 2018).

Intelligent Tutoring System (ITS)

Intelligent Tutoring Systems (ITS) are AI-driven teaching programs, responds to students' learning paces and capabilities. ITS applications include augmented reality-based tutoring and automated grammar instruction (Abu Ghali et al., 2018; Alhabbush et al., 2016).

ITS platforms analyze students' responses, adjust difficulty levels, and provide real-time feedback, enhancing self-paced learning. Research suggests that AI-driven tutoring systems significantly improve student engagement and comprehension.

Scope/Purpose of Study

With the ongoing implementation or use of information technology, AI has transformed the education in various ways. This research aims to evaluate how the implementation of AI can be a positive impact by our suggestion to the future in education sector. We suggest having a programme which can display answers to a question with steps and if compared with different sources the answer should be same rather than having multiple solutions to a single question. If a software like this is invented many students will be guided to learn properly step by step and will not only cheat the answers in any possible way. There are many guides for students to study but they have so much theory segments that confuses young generation. There can be also a way by which learning can be fun and interesting, VR technology can be used in many departments of education mainly like in medical sections they can try to perform difficult surgeries with an illusion of human body. Education is a really widespread topic however the use of AI has been really limited most significantly in the Indian Education System that has a major effect on learning practical skills rather than theory.

Few application of AI in Education are as follows:

- Adaptive learning
- Assistive learning
- Early childhood Education
- Facilities management
- Writing and many more

Literature Review

AI has led to significant advancements in the education sector, with various tools and technologies enhancing learning experiences. However, some AI-driven innovations, such as learning outcome detection systems, individualized education, and robot teachers, are still in their developmental stages. Researchers like Gocen and Aydemir have explored AI's potential to provide personalized instruction and automated support for students.

Several AI-powered applications are already transforming education:

- **Duolingo:** Duolingo is an AI-driven language learning platform that tailors lessons based on user performance. The platform provides personalized feedback and adaptive exercises, leveraging AI to analyze learners' strengths and weaknesses, thus improving language acquisition at an individualized pace.
- **Ivy Chatbot:** Ivy Chatbot is an AI-powered chatbot designed to assist students with various academic and administrative processes, including university applications, enrollment, and financial aid inquiries. By utilizing AI, Ivy Chatbot enhances student engagement, streamlines administrative workflows, and ensures timely responses to student queries.
- **ELSA Speak:** ELSA Speak is an advanced speech recognition AI tool that helps users improve their English pronunciation. The platform provides real-time interactive lessons, instant feedback, and personalized learning paths to help learners refine their speaking skills. By leveraging deep learning and speech recognition algorithms, ELSA Speak enhances oral language proficiency for non-native speakers.
- **Google Classroom:** Google Classroom integrates AI-driven teaching tools to facilitate personalized learning. The platform allows educators to automate grading, track student progress through analytics, and provide tailored learning materials. AI-enhanced features such as practice sets help teachers create interactive assignments while offering real-time feedback to students.
- **ChatGPT:** ChatGPT functions as a virtual AI tutor, assisting students with explanations, practice exercises, and concept reinforcement. By utilizing natural language processing, ChatGPT provides detailed responses, helping students gain a deeper understanding of complex topics. The tool also supports educators by generating learning materials and automating certain administrative tasks.

With the continuous development of AI applications, students can now learn at their own pace, ensuring improved comprehension and retention of knowledge.

AI Implementation in Education

The Effective incorporation of AI in education needs a systematic framework that involves multiple key players, including teachers, administrators, decision makers, and technology providers. The following steps outline how AI can be effectively implemented in educational institutions:

Infrastructure Development

- Ensure access to high-speed internet and AI-compatible hardware, such as computers, tablets, and smartboards.
- Invest in cloud-based learning management systems (LMS) that support AI-driven tools.
- Develop secure data storage solutions to manage student information while maintaining privacy.

Teacher Training and Development

- Conduct professional development programs to familiarize educators with AI-powered teaching tools.
- Provide hands-on training for using AI-driven platforms like intelligent tutoring systems, grading automation, and adaptive learning modules.
- Encourage collaboration between educators and AI developers to create customized AI-based teaching resources.

AI-Powered Learning Tools

- Implement **Personalized Learning Platforms** to adapt course content based on student performance.

- Utilize **Virtual Teaching Assistants**, such as AI chatbots, to provide instant feedback and answer student queries.
- Introduce **AI-Based Assessment Tools** to automate grading and provide real-time feedback on assignments and exams.
- Integrate **Speech and Text Recognition AI** to assist students with disabilities, enabling accessibility through voice commands and text-to-speech tools.

Curriculum Enhancement

- Develop AI-assisted **adaptive learning paths** that cater to students with different learning speeds and styles.
- Use AI for **content recommendation systems**, ensuring students receive relevant study materials based on their interests and academic progress.
- Make use of **virtual and augmented reality (VR/AR)** enabled by AI to design experimental learning experiences, particularly for subjects like science and engineering.

Student Engagement and Support

- Deploy AI-driven **Gamified Learning Systems** to make lessons more interactive and engaging.
- Utilize AI analytics to track student engagement levels and identify at-risk students for timely intervention.
- Implement AI-powered career counseling and skill development platforms to guide students based on market trends and their aptitudes.

Policy and Ethical Considerations

- Establish ethical guidelines for the use of AI in education to prevent bias and ensure fair assessment.
- Implement strict data security protocols to protect student information and prevent misuse of AI algorithms.
- Promote transparency by allowing educators and students to understand how AI-driven decisions are made.

Continuous Improvement and Monitoring

- Regularly evaluate AI's impact on student learning outcomes and teaching effectiveness.
- Encourage feedback from teachers and students to refine AI applications.
- Collaborate with AI researchers and educational institutions to stay updated with technological advancements.

Conclusion

The integration of Artificial Intelligence into education has revolutionized teaching and learning methodologies, leading to significant improvements in efficiency, accessibility, and student engagement. AI-driven technologies/tools such as smart tutoring systems, automated assessments, personalised learning platforms, and virtual assistants have enhanced a more personalized and effective learning experience. These advancements have reduced administrative burdens on educators while enhancing instructional quality.

Although it offers significant advantages, AI in education also introduces obstacles that need to be managed to ensure its just and accountable deployment. Issues such as data security, bias in AI algorithms, high implementation costs, and the technology gap act as obstacles to widespread AI adoption. Additionally, the need for proper teacher training and ethical responsible AI governance models remains a critical concern.

As AI technology further develops, it is essential for policymakers, educators, and technology developers to collaborate in creating inclusive AI-driven educational systems. Investment in infrastructure, ethical AI governance, and continuous innovation will play a crucial role in determining the future of AI in education. By addressing existing challenges and leveraging AI's potential responsibly, the education sector can move towards a more dynamic, accessible, and effective learning environment, ultimately fostering student success in the digital era.

AI has significantly influenced the education sector, improving teaching efficiency, student engagement, and learning outcomes. While AI offers immense potential, its ethical and practical challenges must be addressed to ensure equitable access and responsible use. Future advancements in AI-driven education will continue to shape student success, fostering a more personalized, efficient, and inclusive learning environment.

References

1. Chagnon-Lessard, N., Gosselin, L., Barnabe, S., Bello-Ochende, T., Fendt, S., Goers, S., Da Silva, L. C. P., Schweiger, B., Simmons, R., Vandersickel, A., & Zhang, P. (2021). Smart campuses: Extensive review of the last decade of research and current challenges. *IEEE Access*, 9, 124200–124224. <https://doi.org/10.1109/ACCESS.2021.3110712>.
2. Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: A review. *IEEE Access*, 8, 75264–75278. <https://doi.org/10.1109/ACCESS.2020.2988510>
3. Ishita Tandon, V. M., Walls, A., & Elsaadany, M. (2024). Immersive virtual reality-based learning as a supplement for biomedical engineering labs: challenges and lessons learned. *Frontiers in Medical Technology*, 6. <https://doi.org/10.3389/fmedt.2024.1301004>
4. Sofianos, K. C., Stefanidakis, M., Kaponis, A., &Bukauskas, L. (2024). Assist of AI in a smart learning environment. In I. Maglogiannis, L. Iliadis, J. Macintyre, M. Avlonitis, & A. Papaleonidas (Eds.), *Artificial intelligence applications and innovations* (Vol. 714) Springer. https://doi.org/10.1007/978-3-031-63223-5_20
5. Tripathi, S., & Rosak-Szyrocka, J. (Eds.). (2024). Impact of Artificial Intelligence on Society (1st ed.). Chapman and Hall/CRC. <https://doi.org/10.1201/9781032644509>.
6. García-Robles, A., et al. (2024). Immersive virtual reality and augmented reality in anatomy education: A systematic review and meta-analysis. *Anatomical Sciences Education*. Advance online publication. <https://doi.org/10.1002/ase.2397>
7. Graesser, A. C., Chipman, P., Haynes, B. C., & Olney, A. (2005). AutoTutor: An intelligent tutoring system with mixed-initiative dialogue. *IEEE Transactions on Education*, 48(4), 612–618.
8. Gupta, S. K., Mahto, M. K., Raja, A. R., Vashista, M., & Yusufzai, M. Z. K. (2024). Effect of friction stir processing on the mechanical properties of gas metal arc welded AISI 409L stainless steel plate. *Materials Today Communications*, 111075. <https://doi.org/10.1016/j.mtcomm.2024.111075>
9. Zuo, G., Wang, R., Wan, C., et al. (2024). Unveiling the evolution of virtual reality in medicine: A bibliometric analysis of research hotspots and trends. *Healthcare*, 12(13), 1266. <https://doi.org/10.3390/healthcare12131266>.

