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ABSTRACT 
 

Graph theory has become a pivotal area of research due to its broad applications in fields such as 
biochemistry (genomics), coding theory, communication networks, and cyber security. Recently, its 
integration into cryptography has garnered significant attention. This paper reviews the various ways in 
which graph theory is applied to cryptography, focusing on cryptographic algorithms that leverage 
general graph theory concepts, external graph theory, and expander graphs. In addition, we explore the 
potential of graph-theoretical models in enhancing cryptographic primitives, such as secure key 
exchange protocols, digital signatures, and encryption schemes. A novel perspective is presented on 
how graph theory could be used to construct new types of cryptographic systems with increased security 
and efficiency. Furthermore, we discuss emerging trends, including the use of quantum-resistant graph-
based cryptographic protocols and the role of random graphs in improving the scalability of 
cryptosystems. This paper highlights the promising synergy between graph theory and cryptography and 
suggests future research directions to optimize these interdisciplinary approaches.  
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Introduction 

 In recent years, the explosive growth of computers and their network connections has 
highlighted the increasing need for securing digital communications, particularly in sensitive areas such 
as military and governmental sectors. These sectors involve the exchange of vast amounts of confidential 
information, making confidentiality, authentication, and access control essential. This has led to a surge 
in research focused on cryptography and security, aiming to protect systems and information from an 
ever-growing range of cyber threats. Modern cryptography relies heavily on mathematical principles, 
particularly from Complexity Theory, to ensure strong security. One key concept in this area is the 
provable hash function. A hash function is considered "provable" if finding a collision in it is equivalent to 
solving another well-known hard problem, such as integer factorization or discrete logarithms. This 
assumption forms the basis for the security of current cryptosystems, with the idea that certain 
computational problems cannot be solved efficiently. While traditional mathematical and algorithmic 
methods have been central to modern cryptography, recent years have seen a growing interest in 
applying graph theory concepts to enhance cryptographic security. Graph theory offers a wide range of 
unique tools that can be used to tackle cryptographic challenges. For example, bipartite graphs, which 
represent two sets of vertices with edges between them, are particularly useful in secure communication 
systems and key exchange protocols. Similarly, Hamiltonian graphs, which focus on cycles that visit each 
vertex exactly once, have applications in problems involving optimal data routing and network flow in 
distributed systems. 

 Other interesting areas in graph theory, such as Eulerian graphs, which deal with paths that visit 
every edge exactly once, and extremal graphs, which focus on optimizing specific graph properties, are 
also being explored for cryptographic purposes. Eulerian graphs can be particularly useful in routing 
problems within cryptographic protocols, where data needs to flow efficiently without revisiting paths. 
Extremal graphs help in identifying optimal graph structures that can lead to more efficient and secure 
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cryptographic algorithms. Moreover, expander graphs, known for their excellent connectivity properties, 
are being increasingly applied to cryptography. These graphs are particularly effective in scenarios that 
require fast and secure information dissemination, such as in block chain technologies or secure multi-
party computations. In this paper, we explore the application of graph theory concepts, such as bipartite, 
Hamiltonian, Eulerian, extremal, and expander graphs, in the development of cryptographic methods. We 
will begin by reviewing the use of simple and directed graphs in algorithm design, followed by an 
exploration of extremal graphs, Hamiltonian, Eulerian and bipartite graph. This study aims to highlight 
how graph theory and cryptography together can lead to innovative solutions for securing digital 
communications. 

Literature Review 

 Several strategies for exploring the applications of labelled graphs are discussed in [1]. Graph 
labelling refers to the assignment of real values to vertices and edges of a graph under specific 
conditions. These techniques are driven both by their usefulness in practical domains and their inherent 
mathematical appeal. The concept of graph labelling emerged during the 1960s, and since then, a wide 
variety of labelling methods have been developed, appearing in over a thousand research papers. The 
field continues to evolve due to the growing interest in its application-based models. 

In [2], the notions of inner magic and inner anti magic labelling were introduced. As per this 
study, "an inner magic labelling" of a graph, with vertices, edges, and internal faces, assigns labels such 
that the weights of the internal faces follow an arithmetic sequence with a common difference. If the 
graph is termed as inner magic, and if it is referred to as inner anti magic. These labelling methods 
were utilized in [3] for secure data transmission in cryptographic applications. 

The work in [4] explores the role of super mean and magic labelling in cryptography. 
Additionally, [5] presents fundamental ideas regarding graph-based encryption, while [6] demonstrates 
the use of specific graphs for cryptographic implementation. 

The correlation between randomness and cryptography is examined in [8], and [9] describes 
algorithms for encryption and decryption grounded in graph theory principles, particularly for symmetric 
key cryptography. Computers may attempt to generate randomness through various methods, including 
algorithmic number generation or by observing unpredictable physical events—like temperature 
fluctuations, system interrupts, or mouse movement. Although these sources don’t always produce ideal 
randomness, they are often adequate for practical encryption purposes. Research by Yevgeniy focuses 
on defining the precise conditions that determine when a source of randomness is sufficient and on 
developing efficient ways to utilize such sources. 

A method leveraging bipartite graphs for encrypting messages is proposed in [10]. In [11], the 
use of labelled graphs in applications such as cryptography is further explored. A bipartite graph can be 
colour using two colour such that no two adjacent vertices share the same colour. This property implies 
that the graph’s vertex set can be divided into two groups: each edge connects a vertex from one group 
to a vertex in the other, and no edges exist within the same group. 

Graph theory has become an essential tool in cryptography, leading to innovative approaches 
for securing data. Several techniques leverage graph structures, directed graphs, and related concepts to 
design cryptographic algorithms, secret sharing schemes, and encryption systems. [12]Samid (2004) 
encryption method uses a graph as the key, where a path on the graph represents the plaintext and the 
edges form the cipher text. This approach directly applies graph traversal to encryption, ensuring secure 
communication. Quick trickle permutations, where the spacing between elements is distinct, are linked to 
Complete Latin squares. [13] Mittenthal (2007) work on directed graphs and Latin squares enhances 
block encryption systems by introducing structured permutations to protect data. Secret sharing schemes 
introduced by Shamir (1979) [14] enable an authority to divide a secret into multiple shares, which are 
distributed among a group of participants. Only a specific subset of these participants can combine their 
shares to reconstruct the original secret. These schemes are crucial in distributed cryptographic systems 
where trust is shared among multiple parties. Visual cryptography schemes (VCS), developed by Naor 
and Shamir(1994) [15], encode images into shares, and the secret is revealed when the shares are 
stacked. Lu et al.(2008) [16] extended this concept using graphs, where both vertices and edges carry 
images, enabling the sharing of multiple secret. Visual cryptography using graphs allows for the sharing 
of multiple secrets through transparency overlays. The study of Shamir (1979) [14] demonstrated that the 
complexity of these schemes depends on the chromatic number of the graph’s cube, influencing 
scalability and security. Steve Lu et al.(2008) extended this concept to enable sharing of multiple secret 



Hemant Gena & Binny Kakkar: Advancing Cryptographic Security through Graph Theory:....... 43 

images on graphs. Directed graphs represent quick trickle permutations, allowing for flexible encryption 
sequences. Mittenthal (2007) [13] methods enable the rearrangement of these sequences, improving the 
security of block ciphers. 

Algorithm for Encryption 

Construction of Encryption Table:- We allocate the integers 0,1,2,…, m to represent the rows, 
and assign the numbers m+1,m+2,m+3,…, n to denote the column. The characters from the set S, which 
consists of all 26 letters of the alphabet, a @, and a dot (.), are then randomly distributed across this 
table. The characters in S are the ones used to form the original message. A sample representation of 
this layout can be seen in Table 1 

Table (A): Encryption Table 

 7 8 9 10 

0 A H O V 

1 B I P W 

2 C J Q X 

3 D K R Y 

4 E L S Z 

5 F M T @ 

6 G N U . 
 

 In this scheme, each character is mapped to a unique numerical value based on its group 
classification. The character set is divided into two distinct groups: 

 Group 1 includes all vowels (A, E, I, O, U), the @ character, and the dot (.). 

 Group 2 consists of all remaining consonants. 

 The method of assigning numeric values differs for each group: 

• For Group 2 (Consonants): The first digit of the assigned number corresponds to the row index, 
and the remaining digits represent the column index. 

• For Group 1 (Vowels, @, and dot): The last digit corresponds to the row index, and the 
preceding digits represent the column index. 

 Examples: 

 A = 70 

 F = 57 

 R = 39 

 X = 210 

 O = 90 

 U = 96 

 @ = 105 

 Dot = 106 

Construction of Graph 

In this phase, the plain text (original message) is encoded into a graph structure. The process 
involves the following: 

• Represent each character in the message as a vertex of a complete graph Kn where n is the 
number of characters in the message M. 

• Each character is converted into its numeric equivalent (from Table a) and assigned to a vertex. 

• Edges are then labelled by computing the modulus of the difference between the numerical 
labels of the connected vertices. 

Graph-Based Matrices Generation 

Two matrices are constructed from the labeled graph: 

• Matrix A: A complete graph matrix derived from the labeled graph Kn. 
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• Matrix B: A cycle matrix formed by removing the inner edges of the complete graph, retaining 
only the outer cycle. 

Encoding Matrix Modification 

To form the modified cycle matrix ‘B*’ 

Replace the diagonal elements of matrix B with the numeric values of the original characters 
(from Table 2, the Alphabet Encoding Table. 

Table (B): Alphabet Encoding Table 

A 1 N 14 

B 2 O 15 

C 3 P 16 

D 4 Q 17 

E 5 R 18 

F 6 S 19 

G 7 T 20 

H 8 U 21 

I 9 V 22 

J 10 W 23 

K 11 X 24 

L 12 Y 25 

M 13 Z 26 
 

Cipher Matrix Generation 

 Compute the intermediate matrix N as follows: 

 N=A×B∗  

 Where A is the complete graph matrix, B* is the modified cycle matrix. 

Cipher Matrix Generation 

To derive the first cipher matrix C1: 

• Multiply matrix N with a key matrix K. 

• The key matrix K is an upper triangular matrix of order n×n, where n is the length of the original 
message. 

𝑘 =

[
 
 
 
 
 
 
1 2 3 . . . 𝑛
0 1 2 3 . . 𝑛 − 1
0 0 1 2 . 𝑛 − 2
0 0 0 1 2 . .
0 0 0 0 1 2 .
0 0 0 0 0 1 .
0 0 0 0 0 0 1 ]

 
 
 
 
 
 

 

Figure 1: Illustrates the Structure of the Upper Triangular Key Matrix 

Figure (a) Upper Triangular Key Matrix 

Selection of Hamiltonian Cycle 

From the complete graph Kn, a Hamiltonian Cycle is chosen. Since a complete graph with n 
vertices has (n−1)!  Hamiltonian cycles, one specific cycle is selected using the Algorithm of Nearest-
Neighbor. 

Algorithm of Nearest-Neighbor 

• Begin at the vertex that represents the first character of the original message. 

• From the current vertex, move to the adjacent vertex connected by the smallest edge label 
(minimum value). 

• If multiple edges have the same minimum value, select randomly among them. 

• Continue this process until all vertices are visited exactly once and the cycle returns to the 
starting vertex, forming a Hamiltonian Cycle. 
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Second Key Generation 

• Calculate the sum of the edge labels along the chosen Hamiltonian Cycle. 

• Let this sum be denoted by S. This value acts as the second encryption key. 

Final Cipher Matrix 

• Apply modulus S on each entry of the first cipher matrix C1 to produce a new matrix C2: 

• The cipher text is then derived by linearizing matrix C2. 

Algorithm for Decryption Process 

To retrieve the original message, follow these steps: 

• Reshape Cipher Text: Convert the linear cipher text into the matrix form C2. 

• Recover C1: Use the known key S to reverse the modulus operation and retrieve matrix C1. 

Compute Matrix N 

N=C1×K−1  

 where K−1 is the inverse of the key matrix K. 

Recover Modified Matrix B* 

 B∗=A−1× N  

 where A−1is the inverse of matrix A. 

Extract Original Characters: Read the diagonal entries of B* and decode the corresponding 
character values using the Alphabet Encoding Table (Table b). 

The result is the original plain text message. 

Encryption Example 

 Let’s consider the original message: "HELP". 

Since the message contains 4 characters, construct a complete graph K4. 

 Character-to-Value Conversion (Using Table 1): 

Character Numeric Value 

H 08 

E 74 

L 48  
P 19 

 

Vertex Assignment 

V₁ 08 

V₂ 74 

V₃ 48 

V₄ 19 
 
 

To label the edges, compute the modulus of the difference between the values of connected 
vertices. 

For example, for edge (V₁, V₂), the label is: 

 e1=∣08−74∣=66 

 e2=|74 - 48| =26 

 e3=∣48−19∣=29  

 e4=∣19−08∣=11 

 e5=∣08−48∣=40 

 e6=∣19−74∣=55  

 

 



46 International Journal of Education, Modern Management, Applied Science & Social Science (IJEMMASSS) - April- June, 2025 

Repeat this for all edges in K4 

 

Figure (b) Complete Graph 

We obtained a complete graph matrix from above graph which is denoted as “A” 

𝐴 = [

0 66 40 11
66 0 26 55
40 26 0 29
11 55 29 0

] 

                                                             Figure (c) Complete Graph Matrix 

Obtain a New Cycle of Length 4 from k4 

 

Figure (d) Cycle of Length 4 

Then we obtain matrix B with the help of cycle of length 4 

𝐵 = [

0 66 0 11
66 0 26 0
0 26 0 29
11 0 29 0

] 

Now matrix B* by using alphabet encoding table  

𝐵 ∗= [

8 66 0 11
66 5 26 0
0 26 12 29
11 0 29 16

] 
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𝑁 = 𝐴 × 𝐵 ∗= [

0 66 40 11
66 0 26 55
40 26 0 29
11 55 29 0

] × [

8 66 0 11
66 5 26 0
0 26 12 29
11 0 29 16

] = [

4477 1370 2515 1336
1133 5032 1907 2360
2355 2770 1517 904
3718 1755 1778 962

] 

The key matrix will be 4x4 order since original message has 4 characters 

𝑘 = [

1 2 3 4
0 1 2 3
0 0 1 2
0 0 0 1

] 

Now C1  is obtained by C1=NxK 

𝐶1 = 𝑁 × 𝐾 = [

4477 1370 2515 1336
1133 5032 1907 2360
2355 2770 1517 904
3718 1755 1778 962

] × [

1 2 3 4
0 1 2 3
0 0 1 2
0 0 0 1

] = [

4477 10324 18686 28384
1133 7298 15370 25802
2355 7480 14122 21668
3718 9191 16442 24655

] 

Hamiltonian Cycle Construction using the Nearest-Neighbor Algorithm 

 To determine the Hamiltonian Cycle, we employ the Nearest-Neighbor Algorithm, starting with 
the vertex that represents the first character of the message. In this case, the message begins with the 
character ‘H’, so the algorithm initiates from the vertex labelled with the value for ‘H’. 

 

Second key S=11+29+26+66=132 

 We will apply mod 132 on matrix C1 to get matrix C2 

C2= C1 mod 132 

𝐶2 = [

121 28 74 4
77 38 58 62
111 88 130 20
22 83 74 103

] 

And the quotient matrix be 

𝑄 = [

33 78 141 215
8 55 116 195
17 56 106 164
28 69 124 186

] 

Then the receiver will get the cipher text given below 

121 28 74 4    77 38 58 62   111 88 130 20  22 83 74 103 

Decryption Algorithm 

• Step 1: Inputs Required for Decryption 

To decrypt the encrypted message, the following components are needed: 

▪ C₂: Final Cipher Matrix 

▪ Q: Quotient Matrix (used for reversing the modulo operation) 
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▪ S: Second encryption key (calculated using Hamiltonian Cycle), given as S = 132 

▪ K: Key Matrix (upper triangular matrix used during encryption) 

▪ A: Complete Graph Matrix (constructed during encryption) 

Step 2: Reconstruct the Final Cipher Matrix C2 

Given the Cipher Text as a linear sequence: 

121 28 74 4    77 38 58 62   111 88 130 20  22 83 74 103 

This sequence is converted into a 4×4 matrix (since the original message had 4 characters): 

𝐶2 = [

121 28 74 4
77 38 58 62
111 88 130 20
22 83 74 103

] 

Then we obtain the first cipher matrix 𝐶1 with the help of  𝐶2 and matrix Q and the key S=132 

As [Q ]i j x 124 + [C2]i j = [C1] i j 

The we get 𝐶1as 

𝐶1 = [

4477 10324 18686 28384
1133 7298 15370 25802
2355 7480 14122 21668
3718 9191 16442 24655

] 

We compute the inverse of key matrix k as 

𝐾−1 = [

1 −2 1 0
0 1 −2 1
0 0 1 −2
0 0 0 1

] 

Now find matrix N as 

N=𝐶1𝑋𝐾−1 

𝑁 = [

4477 10324 18686 28384
1133 7298 15370 25802
2355 7480 14122 21668
3718 9191 16442 24655

] × [

1 −2 1 0
0 1 −2 1
0 0 1 −2
0 0 0 1

] = [

4477 1370 2515 1336
1133 5032 1907 2360
2355 2770 1517 904
3718 1755 1778 962

] 

Now find inverse of matrix “A” as 

𝐴−1 = [

−5/132 1/132 0 1/22
1/132 −5/429 1/52 0

0 1/52 −55/1508 1/58
1/22 0 1/58 −20/319

] 

Now obtain B* as 

B*=𝐴−1𝑋𝑁 

𝐵∗=𝐴−1 × 𝑁 =

[
 
 
 
 
 
 
 −

5

132

1

132
0

1

22
1

132
−

5

429

1

52
0

0
1

52
−

55

1508

1

58
1

22
0

1

58
−

20

319]
 
 
 
 
 
 
 

× [

4477 1370 2515 1336
1133 5032 1907 2360
2355 2770 1517 904
3718 1755 1778 962

] 

 

= [

8 66 0 11
66 5 26 0
0 26 12 29
11 0 29 16

] 
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Now from the diagonal entries of B* we get our message by using alphabet encoding table 

8=H 

5=E 

12=L 

16=P 

Therefor the original message is “HELP” 

Conclusion 

 This work presents a multi-layered encryption scheme designed to securely conceal plain text 
messages. The method utilizes a complete graph constructed according to the length of the message, 
incorporating both graph theory principles and a Hamiltonian cycle. 

We first generate a Complete Graph Matrix and a Cycle Matrix, assigning edge weights based 
on character values from a predefined Encryption Table. The Cycle Matrix is then modified using values 
from the Alphabet Encoding Table. These two matrices—Graph Matrix (A) and Modified Cycle Matrix 
(B*)—are combined using a shared key matrix (K), which is an upper triangular matrix. The Hamiltonian 
cycle provides a secondary key S, used to perform modular operations that lead to the construction of the 
Final Cipher Matrix (C₂). The output is a cipher text that is highly obfuscated and resistant to direct 
decryption. 

The decryption process reverses these steps by calculating: 

• Matrix C1 from C2 using key S, 

• Matrix N as C1×K−1, 

• Matrix B* as A−1×N, 

and finally retrieving the original message from the diagonal entries of B* using the Alphabet 
Encoding Table. 

This technique ensures that the original message remains well-hidden through a sequence of 
graph-based transformations and matrix operations, offering a robust cryptographic mechanism suitable 
for secure data transmission. 
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