International Journal of Innovations & Research Analysis (IJIRA) ISSN : 2583-0295, Impact Factor: 5.449, Volume 02, No. 01, January - March, 2022, pp 271-276

MATHEMATICAL AND GRAPHICAL STUDY OF MEAN QUEUE LENGTH OF A QUEUEING SYSTEM HAVING COMBINATION OF SIX SERVERS CENTRALLY LINKED WITH A COMMON SERVER

Dr. Santosh Kumari*

ABSTRACT

The present paper deals with the mathematical and graphical study of mean queue length of a queueing system having combination of six servers out of which one server is centrally linked with other five server. Mean queue lengths of each six servers and the whole system has been derived by solving steady state equations using generating function technique.

Keywords: Centrally Linked Server, Mathematical and Graphical, Mean Queue Length, Steady State Equations, Generating Function Technique.

Introduction

Feedback queues are those queues which are formed due to rejoining of the queuing system by the unsatisfied customers who have already availed the service. In real life feedback queues are observed generally in manufacturing concerns, offices, in hospitals etc. Many researchers have done a lot of work on queuing models considering various aspects such as bulk service, impatient customers, cyclic queues, batch arrivals, reneging, blocking. Study on queuing models considering the concept of feedback has also been done by many researchers. Jackson (1957) did a lot of work in the field of cyclic queues with feedback. Multi-server and multiclass queuing models have been discussed by a good number of researchers such as Jianghua and Jinting (2006), Houdt et al. (2008), Goswami and Pandit (2011), Sundri and Srinivasan (2012), Aristotles and Endah (2013), Ibe and Isijola (2014), Morozov (2014), Kang (2015), Yanfeng and Christos (2015), Zadeh (2015), Atar and Mendelson (2016), Avrachenkov et al. (2016), Jansen et al. (2016), Reed and Zhang (2017), Antonioli et al. (2018), Ginting et al. (2018).

Kusum et al. (2010) worked on queues with feedback wherein three servers have been considered wherein a customer may go back to his/her preceding service channel or moving forward to immediate next service channel, except from the third server. Gupta Deepak, Naveen Gulati (2011) studied the steady state behaviour of a network queue model with biserial and parallel channels linked wiyh a common server. Meena Gupta, Deepak Gupta (2012) studied the concept of steady state solutions of multiple parallel channels in series and non-serial multiple parallel channels both in balking and reneging. Gupta Deepak, Naveen Gulati (2011)studied the steady state behaviour of a network queue model with biserial and parallel channels linked wiyh a common server. Meena Gupta, Deepak Gupta (2012) studied the concept of a network queue model with biserial and parallel channels linked wiyh a common server. Meena Gupta, Deepak Gupta (2012) studied the concept of steady state solutions of multiple parallel channels in series and non-serial multiple parallel channels both in balking and reneging. Surender Kumar and Gulshan Taneja

Associate Professor, Department of Mathematics, Gaur Brahman Degree College, Rohtak, Haryana, India.

(2018) analyzed queueing model with chances of revisit of customer at most twice to any of the three servers. Harminder Singh et al (2019) worked on the analysis of network queue model comprised of parellel channels centrally linked with a common server by using the laplace transformation.

Santosh Kumari (2021) found the Mean queue lengths of each of the six servers and the whole system of a queueing model comprised of five parellel channels centrally linked with a common sixth server by solving steady state equations using generating function technique.

In the present paper, I have studied mathematically and graphically the marginal mean queue length of the whole queueing system. Mean queue length has been studied by taking different values of queueing characteristics taking a fixed value of other parameters.

Mathematical Problem

The whole queueing system consists of six servers S₁, S₂, S₃, S₄, S₅ and S₆ in such a way that S₁ and S₂ which are parallel, connected to S₃ central server and which is further connected to S₄, S₅ and S₆ three parallel servers. Customer comes to S₁ and S₂ from outside with arrival rate λ_1 and λ_2 following the Poission Distribution. Then after getting service s/he may go to S₃ for further service. After getting service from S₃, s/he may go to any of the server S₄, S₅ and S₆ for further service.

Notations

 λ_1 : Mean Arrival rate at 1st server (S₁)

- λ_2 : Mean Arrival rate at 2nd server (S₂)
- μ_1 : service rate of 1st server (S₁)
- $\mu_{2:}$ service rate of 2ndserver.
- $\mu_{3:}$ service rate of 3^{rd} server.
- $\mu_{4:}$ service rate of 4th server
- $\mu_{5:}$ service rate of 5^{th} server
- $\mu_{6:}$ service rate of 6^{th} server
- P_{ij}: the probability of customer going from ith to jth server.
- P_i: the probability of customer going from ith to outside the whole queueing system

 $\mathsf{P}_{n1,\ n2,n3,n4,n5,n6}$: Probability of having $_{n1,n2,n3,n4,n5}$ and $_{n6}$ customers at S_1, S_2, S_3, S_4, S_5 and S_6 respectively.

If L_q denote the Mean Queue Length of the system.

By Santosh Kumari (2021), the Mean Queue Length of the system is given by:

$$Lq = \frac{-\lambda_{1}}{\lambda_{1} - \mu_{1}} - \frac{\lambda_{2}}{\lambda_{2} - \mu_{2}} + \frac{\lambda_{1} + \lambda_{2} - \mu_{1} - \mu_{2}}{\mu_{1}} + \frac{(\lambda_{1} + \lambda_{2})p_{34}}{(\mu_{4} - \mu_{3}p_{34})} - \frac{(\lambda_{1} + \lambda_{2})p_{35}}{p_{35}\mu_{3} - \mu_{5}} - \frac{(\lambda_{1} + \lambda_{2})p_{36}}{(\mu_{3}p_{36} - \mu_{6})}$$

Numerical Results and Discussion

• Behaviour of mean queue length (L_q) of the system with respect to probability of customer going from third server to fourth server (p_{34}) for different values of service rate of third server (μ_3) is depicted in Table 1 and in Fig. 1 keeping the values of other parameters as fixed.

Table 1

λ_1 =11, λ_2 =12, μ_1 =15, μ_2 =16, μ_4 =18, μ_5 =19, μ_6 =20					
P ₃₄	P 35	P ₃₆	µ₃=17	µ₃=20	µ₃=25
			Lq	Lq	Lq
0.1	0.2	0.7	7.640297077	8.350416667	12.13362519
0.125	0.25	0.625	7.320932871	7.72953149	9.146638655
0.15	0.3	0.55	7.124163942	7.382991453	8.08277193
0.175	0.35	0.475	7.017554317	7.205562397	7.642060749
0.2	0.4	0.4	6.982803217	7.148268398	7.512735043
0.225	0.45	0.325	7.010047904	7.188703704	7.59980604
0.25	0.5	0.25	7.095165945	7.32008547	7.893440956
0.275	0.55	0.175	7.238636199	7.547856061	8.452329802
0.3	0.6	0.1	7.445415266	7.890873016	9.455238095
0.35	0.62	0.03	7.605698426	8.144657919	10.19706681

Fig. 1

The following can be interpreted from Table 1 and Fig. 1.

- Mean queue length of the system L_q get decreased with the increase in p_{34} upto $p_{34} = 0.2$ and then increases continuosly.
- Mean queue length of the system L_q increases with the increase in μ₃.
- Behaviour of mean queue length of the system with respect to service rate of first server (μ_1) for different values of service rate of second server (μ_2) is depicted in Table 2 and in Fig. 2 keeping the values of other parameters as fixed.

Table 2

λ_1 =10, λ_2 =12, μ_3 =17, μ_4 =18, μ_5 =19, μ_6 =20, p_{34} =0.6, p_{35} =0.3, p_{36} =0.1				
μı	μ ₂ =16	μ ₂ =17	μ ₂ =18	
	Lq	Lq	Lq	
15	6.687346415	6.020679749	5.554013082	
16	6.329013082	5.666513082	5.204013082	
17	6.06885902	5.410035491	4.951211962	
18	5.870679749	5.215124193	4.759568638	
19	5.714247	5.061615421	4.608983842	
20	5.587346415	4.937346415	4.487346415	
21	5.48215161	4.834532563	4.386913515	
22	5.393407021	4.747952476	4.302497931	
23	5.31744675	4.673968489	4.230490228	
24	5.25163213	4.609965463	4.168298796	

The following can be interpreted from Table 2 and Fig. 2.

Mean queue length of the system L_q get decreased with the increase in mean service rate of first server (μ_1) as well as service rate of second server (μ_2).

 Behaviour of mean queue length of the system with respect to service rate of third server (μ₃) for different values of service rate of fourth server (μ₄) is depicted in Table 3 and in Fig. 3 keeping the values of other parameters as fixed.

Table 3

λ_1 = 10, λ_2 =12, μ_1 =15, μ_2 =16, μ_5 =19, μ_6 =20, p_{34} =0.6, p_{35} =0.3, p_{36} =0.1			
μ₃	μ ₄ =18	μ₄=20	μ ₄ =22
	Lq	Lq	Lq
15	6.440758	6.174091	5.989476
16	6.555783	6.253585	6.04887
17	6.687346	6.341977	6.113683
18	6.839507	6.440956	6.184745
19	7.017788	6.552671	6.263071
20	7.229915	6.679915	6.349915
21	7.487035	6.826374	6.446845
22	7.805854	6.99703	6.555854
23	8.212605	7.198781	6.679504
24	8.750989	7.441465	6.821164

Fig. 3

The following can be interpreted from Table 3 and Fig. 3.

- Mean queue length of the system L_q get increased with the increase in mean service rate of third server (μ₃).
- Mean queue length of the system L_q get decreased with the increase in mean service rate of fourth server (µ₄).
- Behaviour of mean queue length of the system with respect to service rate of third server (μ_3) for different values of service rate of fifth server (μ_5) is depicted in Table 4 and in Fig. 4 keeping the values of other parameters as fixed.

	т	able 4	
$λ_1$ = 10, $λ_2$ = 12, $μ_1$ = 15, $μ_2$ = 16, $μ_4$ = 18, $μ_6$ = 20, p_{34} = 0.6, p_{35} = 0.3, p_{36} = 0.1			
	μ ₅ =18	µ₅=19	μ ₅ =20
μ ₃	Lq	Lq	Lq
15	6.657808	6.624091	6.594725
16	6.803349	6.768138	6.73756
17	6.973023	6.936215	6.904348
18	7.173721	7.135205	7.101966
19	7.415275	7.37493	7.340228
20	7.712222	7.669915	7.633651
21	8.087008	8.04259	8.004657
22	8.576227	8.529538	8.489817
23	9.243888	9.194748	9.153111
24	10.21303	10.16125	10.11755

Fig. 4

The following can be interpreted from Table 4 and Fig. 4.

- Mean queue length of the system L_q get increased with the increase in mean service rate of third server (µ₃).
- Mean queue length of the system L_q get decreased with the increase in mean service rate of fourth server (µ₄).
- Behaviour of mean queue length of the system with respect to service rate of third server (μ₃) for different values of service rate of sixth server (μ₆) is depicted in Table 5 and in Fig. 5 keeping the values of other parameters as fixed.

λ_1 = 10, λ_2 =12, μ_1 =15, μ_2 =16, μ_4 =18, μ_5 =19, p_{34} =0.6, p_{35} =0.3, p_{36} =0.1				
	μ ₆ =10	μ ₆ =18	μ ₆ =25	
μ ₃	Lq	Lq	Lq	
15	6.580663	6.455172	6.415456	
16	6.698122	6.570364	6.530234	
17	6.832188	6.702097	6.661548	
18	6.98692	6.85443	6.813455	
19	7.167846	7.032887	6.991479	
20	7.382692	7.245192	7.203344	
21	7.64261	7.502494	7.460199	
22	7.964309	7.821499	7.778749	
23	8.374026	8.228439	8.185228	
24	8.915462	8.767014	8.723334	

Table 5

Fig. 5

The following can be interpreted from Table 5 and Fig. 5.

- Mean queue length of the system L_q increases with the increase in (μ₃).
- Mean queue length of the system L_q decreases with the increase in (μ₆).

References

- 1. Jackson, R.R.P. 1954. Queuing systems with phase-type service. Operational Research Quarterly, 5, 109-120.
- 2. Maggu, P.L. 1970. Phase type service queues with two servers in biseries. Journal of Operational Research Society of Japan, 13(1), 1-6.
- 3. Singh, T. P., Vinod, K., Rajinder, K., (2005). On transient behaviour of a queuing network with parallel biserial queues, JMASS, 1(2),68-75.
- 4. Gupta D., Singh, T.P., Rajinder, K., (2007). Analysis of a network queue model comprised of biserial, and parallel channel linked with a common server. Ultra Science, 19(2) M, 407-418.
- 5. Kumar, V., Singh, T. P., and Kumar, R. 2006. Steady state behaviour of a queue model comprised of two subsystems with biserial channels linked with a common channel. Ref Des Era JSM, 1(2), 135-152.
- Gupta, D., Sharma, S. and Sharma, S. 2012. On linkage of a flowshop scheduling model including job block criteria with a parallel biserial queue network, Computer Engineering, and Intelligent System, 3(2), 17-28
- 7. Seema, Gupta, D. and Sharma, S. 2013. Analysis of biserial servers linked to a common server in fuzzy environment, International Journal of Computer Applications, 68(6), 26-32.
- Surender Kumar and Gulshan Taneja (2018), A Feedback Queuing Model with Chances of Revisit of Customer at Most Twice to Any of the Three Servers. International Journal of Applied Engineering Research, Volume 13 (17), pp. 13093-13102.
- 9. Kumar, S. 2019, "Mathematical Modelling of Queue Networks for Some Feedback and Booking Systems", Ph. D. Thesis, M.D.U. Rohtak.
- 10. Harminder Singh et al (2019), Analysis of a network queue model comprised of parallel channels centrally linked with a common server. Think India Journal, 22(14), 10089-10109.
- Santosh Kumari (2021), Expected Queue Lengths of Servers of Queueing System Having Combination of Six Servers Centrally Linked with a Common Server. Shodh Sarita, Volume 8 (29), pp 106-115.