MULTI OBJECTIVE TIME DEPENDENT TRANSPORTATION PROBLEM FORMULATION AND THEIR SOLUTIONS

Abstract

Corporate and industries are fundamentally tackling with financial optimization such as cost minimization of non-economic items that are vibrant to the presence of their businesses. The transportation problem (TP) is one of the ultimate optimization problems in the branch of optimization or operations research (OR). The transportation problems mostly focus on the best possible way a product manufactured at different supply origins can be transported to a various demand destinations. The objective in a TP is to fully gratify the destination necessities within the functioning manufacture capacity constraints at the minimum feasible cost. The construction of transportation problem comprises a large number of transport routes from numerous supply origins to numerous demand destinations. The penalty i.e., the coefficients of the objective function can characterise transportation cost, time, profit, product defectiveness and so on. In this paper we have developed Multi objective Time dependent transportation problem formulation and their solutions by using fuzzy programming technique with two objective cost as a function of time and risk.

KEYWORDS: Multi- Objective, Transportation, Liner Regression, Fuzzy Programming, Cost, Time.

Introduction

One important application of linear programming is in the area of physical distribution (transportation) of goods and services from several supply centres to several demand centres. It is easy to mathematically express a transportation problem in terms of LP problems, which can be solved by the simplex method. The structure of transportation problem involves a large number of shipping routes from several supply origins to several demand destinations. The objective is to determine the number of units of an item that should be shipped from an origin to a destination in order to satisfy the required quantity of goods or services available at each supply centre, at the minimum transportation cost or time. There are various types of transportation models and the simplest of them was presented by F L Hitchcock(1941).It was further developed by T C Koopmans(1949) and G B Dantzig (1951) [1]. The multi-objective transportation problem refers to a special class of linear programming problem in which the constraints are of equality type and all the objectives are conflicting each other. All the proposed methods to solve multi-objective linear programming problem generate a set of non-dominated or compromise solution. A variety of approaches, such as lexicographic goal programming approach, interactive algorithm, the step method, the utility function method have been developed by many researchers for the multi-objective linear programming problem. A.J Khan and D.K Das(2012) [2] used row maxima method to solve Multi-Objective transportation problem under fuzzy conditions. A.J Khan and D.K Das(2013) [3] used EMV(Expected Monetary value) approach to solve Multi-Objective transportation problem under fuzzy conditions.

Mohammad Asim Nomani, Irfan Ali and A. Ahmed [4] presented algorithm of proposed method in 2017. In proposed method they have used weighted sum method based on goal programming. In 2017 only, Sankar Kumar Roy, Gurupada Maity, Gerhard Wilhelm Weber and Sirma Zeynep Alparslan Gök [5] solved multi objective transportation problem by using conic scalarization approach with interval goal.

[^0]Then, by using utility approach with goals Sankar Kumar Roy, Gurupada Maity and Gerhard-Wilhelm Weber [6] solved multi objective two stage grey transportation problem in 2017. By inspired from Zimmermann's fuzzy programming and the neutrosophic set terminology recently in 2018, Rizk M. RizkAllah, Aboul Ella Hassanien and Mohamed Elhoseny [7] proposed a model under neutrosophic environment. In this model for each objective functions, they considered three membership functions namely, truth membership, indeterminacy membership and falsity membership. Srikant Gupta, Irfan Ali and Aquil Ahmed [8] presented their study on multi objective capaciated transportation problem with uncertain supply and demand. They formulated deterministic form of the problem by using solution procedure of multi choice and fuzzy numbers. Then they used goal programming approach to solve fractional objective function. The linear interactive and discrete optimization (LINDO),general interactive optimizer(GINO) and TORA packages as well as many other commercial and academic packages are useful to find the solution of the transportation problem.

Corporate and industries are fundamentally tackling with financial optimization such as cost minimization of non-economic items that are vibrant to the presence of their businesses. The transportation problem (TP) is one of the ultimate optimization problems in the branch of optimization or operations research (OR). The transportation problems mostly focus on the best possible way a product manufactured at different supply origins can be transported to a various demand destinations. The objective in a TP is to fully gratify the destination necessities within the functioning manufacture capacity constraints at the minimum feasible cost. Whenever there is a physical effort of goods from the point of industrialist to the ultimate trades through a variety of frequencies of delivery (traders, dealers, distributors etc.), there is a necessity to minimize the cost of transportation to raise profit on sales. The construction of transportation problem comprises a large number of transport routes from numerous supply origins to numerous demand destinations. The penalty i.e., the coefficients of the objective function can characterise transportation cost, time, profit, product defectiveness and so on. The objective is to find the number of units dispatched from an origin to a destination in order to gratify the essential quantity of goods or services at each demand destination, within the limited quantity of goods or services presented at each supply origin at the minimum transportation cost or time. Transportation problem has been mostly used to solve decision-making problem in industrial organization, manufacturing system, developing service system, etc. In TP, generally two types of objectives (minimum and maximum) are measured. Minimization term is used for minimizing cost or time etc., while the maximization term is used for maximizing the overall profit or the overall quality, etc. In this paper we try to develop Multi objective Time dependent transportation problem formulation and their solutions.

Data Collection of Multi Objective Time Dependent Transportation Problem

This section represents the secondary data [9] collected by researchers. The data are as follows: A XYZ delivers its small packet of biscuits from four cities in India, namely Bengaluru (S1), Nashik (S2), Neemrana (S3) and Sitarganj (S4) to four cities in India, namely Kanpur (D1), Kolkata (D2), Surat (D3) and Hyderabad (D4).

The manger (Decision Maker) of a company wants to minimize a cost of transportation as well as minimize a risk of transportation for particular mode. They have used website of Indian post to collect the data for multi objective transportation problem formulation. They have added weight and dimensions of above mentioned product on postage calculator tool of that website and got the data for each sources and destinations Considering that the DM wants to transport a packet (containing 24 number of small packets) of Parle g biscuit with weight 2 kg , length 20 cm , width 18 cm and height 9 cm by express parcel mode of Indian post. Here, supply capacities of sources S1, S2, S3 and S4 are 20, 14, 27 and 19 respectively. Demand levels of destinations D1, D2, D3 and D4 are 17, 18, 24 and 11.

The time taken to transport a one big packet from post office of source cities to post office of destination cities is given in table 1 .

Table 1: Transportation Time (In Days)

	Kanpur	Kolkata	Surat	Hyderabad
Bengaluru	$5-6$	$2-4$	$5-6$	$2-4$
Nashik	$5-6$	$5-6$	$5-6$	$5-6$
Neemrana	$5-6$	$5-6$	$5-6$	$5-6$
Sitarganj	$5-6$	$5-6$	$5-6$	$5-6$

The transportation cost to transport a one big packet from post office of source cities to post office of destination cities within a time interval shown in table 1 is given in table 2.

Table 2: Transportation Cost (In Rs.)

	Kanpur	Kolkata	Surat	Hyderabad
Bengaluru	165.20	146.32	165.20	146.32
Nashik	165.20	165.20	165.20	165.20
Neemrana	134.52	165.20	165.20	165.20
Sitarganj	134.52	165.20	165.20	165.20

Now, on the basis of data given in table 1 and table 2, for respective source and destination I break down the time interval in six parts and take cost data hypothetically which are shown in following tables.

Table 3: Transportation Cost and Time for Bengaluru to Kanpur

	Kanpur						
Bengaluru	Time(Days)	5	5.5	6	6.5	7	7.5
	Cost(Rs.)	165.75	165.45	165.2	165	164.75	164.6

Table 4: Transportation Cost and Time for Bengaluru to Kanpur

	Kolkata						
Bengaluru	Time(Days)	2	3	4	5	6	7
	Cost(Rs.)	146.75	146.5	146.32	146.15	146	145.8

Table: 5 Transportation cost and time for Bengaluru to Surat

	Surat						
Bengaluru	Time(Days)	5	5.5	6	6.5	7	7.5
	Cost(Rs.)	165.65	165.4	165.2	165	164.95	164.7

Table 6: Transportation Cost and Time for Bengaluru to Hyderabad

	Hyderabad						
Bengaluru	Time(Days)	5	5.5	6	6.5	7	7.5
	Cost(Rs.)	146.72	146.45	146.32	146.18	146	145.8

Table 7: Transportation Cost and Time for Nashik to Kanpur

	Kanpur						
Nashik	Time(Days)	5	5.5	6	6.5	7	7.5
	$\operatorname{Cost}($ Rs.)	165.8	165.5	165.2	165	164.75	164.6

Table 8: Transportation Cost and Time for Nashik to Kolkata

	Kolkata						
Nashik	Time(Days)	5	5.5	6	6.5	7	7.5
	Cost(Rs.)	165.75	165.4	165.2	165	164.8	164.6

Table 9: Transportation Cost and Time for Nashik to Surat

	Surat						
Nashik	Time(Days)	5	5.5	6	6.5	7	7.5
	Cost(Rs.)	165.7	165.4	165.2	165	164.75	164.6

Table 10: Transportation Cost and Time for Nashik to Hyderabad

	Hyderabad						
Nashik	Time(Days)	5	5.5	6	6.5	7	7.5
	$\operatorname{Cost}($ Rs.)	165.7	165.45	165.2	165.05	164.9	164.7

Table 11: Transportation cost and time for Neemrana to Kanpur

	Kanpur						
Neemrana	Time(Days)	5	5.5	6	6.5	7	7.5
	Cost(Rs.)	134.95	134.75	134.52	134.3	134	133.8

Table 12: Transportation cost and time for Neemrana to Kolkata

	Kolkata						
Neemrana	Time(Days)	5	5.5	6	6.5	7	7.5
	Cost(Rs.)	165.75	165.45	165.2	165	164.8	164.65

Table 13: Transportation cost and time for Neemrana to Surat

	Surat						
Neemrana	Time(Days)	5	5.5	6	6.5	7	7.5
	Cost(Rs.)	165.7	165.45	165.2	165	164.75	164.5

Table 14: Transportation Cost and Time for Neemrana to Hyderabad

	Hyderabad						
Neemrana	Time(Days)	5	5.5	6	6.5	7	7.5
	Cost(Rs.)	165.85	165.5	165.2	165	164.7	164.45

Table 15: Transportation Cost and Time for Sitarganj to Kanpur

	Kanpur						
Sitarganj	Time(Days)	5	5.5	6	6.5	7	7.5
	Cost(Rs.)	134.95	134.75	134.52	134.3	134.1	133.85

Table: 16 Transportation cost and time for Sitarganj to Kolkata

	Kolkata						
Sitarganj	Time(Days)	5	5.5	6	6.5	7	7.5
	Cost(Rs.)	165.75	165.5	165.2	165	164.8	164.6

Table 17: Transportation Cost and Time for Sitarganj to Surat

	Surat						
Sitarganj	Time(Days)	5	5.5	6	6.5	7	7.5
	Cost(Rs.)	165.8	165.5	165.2	165	164.7	164.5

Table 18: Transportation Cost and Time for Sitarganj to Hyderabad

	Hyderabad						
Sitarganj	Time(Days)	5	5.5	6	6.5	7	7.5
	Cost(Rs.)	165.95	165.55	165.2	164.95	164.7	164.45

Liner and Nonlinear Regression Trend of Transportation Cost
To make cost as a function of time I have used linear regression as well as polynomial regression. For that I have used online regression tool of site Xuru.org. Numerous regressions are there few of them are listed below.

- Linear Regression (LR)
- Logarithmic Regression (LnR)
- Exponential Regression (ExpR)
- Power Regression (PowR)
- Polynomial Regression (PR)
- Multiple Linear Regression (MLR)
- Multiple Polynomial Regression (MPR)
- Nonlinear Regression (NLR)

Among them I have choose linear regression tool as well as polynomial regression tool to construct cost as a function of time. A layout of online regression tool is shown in figure:

To make cost as a function of time I have used linear regression and get following cost matrix.
Table 19: Cost as a Function of Time with Linear Regression

	Kanpur	Kolkata	Surat	Hyderabad
Bengaluru	$\boldsymbol{C}_{\mathbf{1 1}}\left(\boldsymbol{t}_{\mathbf{1 1}}\right)$	$\boldsymbol{C}_{\mathbf{1 2}}\left(\boldsymbol{t}_{\mathbf{1 2}}\right)$	$C_{13}\left(t_{13}\right)$	$C_{14}\left(t_{14}\right)$
Nashik	$C_{21}\left(t_{21}\right)$	$C_{22}\left(t_{22}\right)$	$C_{23}\left(t_{23}\right)$	$C_{24}\left(t_{24}\right)$
Neemrana	$C_{31}\left(t_{31}\right)$	$C_{32}\left(t_{32}\right)$	$C_{33}\left(t_{33}\right)$	$C_{34}\left(t_{34}\right)$
Sitarganj	$C_{41}\left(t_{41}\right)$	$C_{42}\left(t_{42}\right)$	$C_{43}\left(t_{43}\right)$	$C_{44}\left(t_{44}\right)$

Where,
$C_{11}\left(t_{11}\right)=\left(-0.4\left(6 t_{11}\right)+16 \$, \quad\left(t_{11}\right) \in[5,7.5]\right.$
RSS $=0.008, R^{2}=0.9914323963$
$C_{12}\left(t_{12}\right)=\left(-1.834285714 \times 10^{-1}\left(t_{12}\right)+147.0787619\right), \quad\left(t_{12}\right) \in[2,7]$
$R S S=0.003527619048, R^{2}=0.9940445373$
$C_{13}\left(t_{13}\right)=\left(-0.36\left(t_{13}\right)+167.4\right), \quad\left(t_{13}\right) \in[5,7.5]$
RSS $=0.013, R^{2}=0.9775862069$
$C_{14}\left(t_{14}\right)=\left(-0.174\left(t_{14}\right)+147.02 \phi, \quad\left(t_{14}\right) \in[2,7]\right.$
$R S S=0.00572, R^{2}=0.9893193913$
$C_{21}\left(t_{21}\right)=\left(-4.828571429 \times 10^{-1}\left(t_{21}\right)+168.159523 \$, \quad\left(t_{21}\right) \in[5,7.5]\right.$
$R S S=0.01204761905, R^{2}=0.9883268931$
$C_{22}\left(t_{22}\right)=\left(-4.428571429 \times 10^{-1}\left(t_{22}\right)+167.8928571\right), \quad\left(t_{22}\right) \in[5,7.5]$
$R S S=0.01071428571, R^{2}=0.9876670092$
$C_{23}\left(t_{23}\right)=\left(-4.342857143 \times 10^{-1}\left(t_{23}\right)+167.8309524\right), \quad\left(t_{23}\right) \in[5,7.5]$
$R S S=0.006047619048, R^{2}=0.9928182654$
$C_{24}\left(t_{24}\right)=\left(-3.885714286 \times 10^{-1}\left(t_{24}\right)+167.5952381\right), \quad\left(t_{24}\right) \in[5,7.5]$
$R S S=0.007761904762, R^{2}=0.9883861774$
$C_{31}\left(t_{31}\right)=\left(-4.42285714310^{1}\left(t_{31}\right)+137.174285\right)$), $\quad\left(t_{31}\right) \in[5,7.5]$
$R S S=0.00307047619, R^{2}=0.9968291124$
$C_{32}\left(t_{32}\right)=\left(-4.37142857110\left(t_{32}\right)+167.87380 \phi, \quad\left(t_{32}\right) \in[5,7.5]\right.$
$R S S=0.01104761905, R^{2}=0.9869580493$
$C_{33}\left(t_{33}\right)=\left(-4.742857143 \times 10^{-1}\left(t_{33}\right)+168.0642857\right), \quad\left(t_{33}\right) \in[5,7.5]$
$R S S=0.0008571428571, R^{2}=0.9991298042$
$C_{34}\left(t_{34}\right)=\left(-5.485714286 \times 10^{-1}\left(t_{34}\right)+168.545238\right), \quad\left(t_{34}\right) \in[5,7.5]$
$R S S=0.006761904762, R^{2}=0.9948902483$
$C_{41}\left(t_{41}\right)=\left(-4.382857143 \times 10^{-1}\left(t_{41}\right)+137.1509524, \quad\left(t_{41}\right) \in[5,7.5]\right.$
$R S S=0.0006704761905, R^{2}=0.9992028421$
$C_{42}\left(t_{42}\right)=\left(-0.46\left(t_{42}\right)+168.0166667\right), \quad\left(t_{42}\right) \in[5,7.5]$
$R S S=0.006333333333, R^{2}=0.9932051855$
$\left.C_{43}\left(t_{43}\right)=\left(-0.5 \not t_{43}\right)+168.366666\right), \quad\left(t_{43}\right) \in[5,7.5]$
$R S S=0.005333333333, R^{2}=0.9955119215$
$C_{44}\left(t_{44}\right)=\left(-5.885714286 \times 10^{-1}\left(t_{44}\right)+168.8119048\right), \quad\left(t_{44}\right) \in[5,7.5]$
$R S S=0.1776190476, R^{2}=0.9884161491$
To make cost as a function of time i have used polynomial regression and get following cost matrix.

Multi Objective Transportation Problem Formulation

Before formulating the model of multi objective transportation with cost as a function of time, first I have found solution for single objective only which is to minimize the transportation cost. For that I have considered three cases which are described as below.
Case 1: Cost matrix for first value of time interval (In days) for each sources and destinations.
$t_{11}=t_{13}=t_{21}=t_{22}=t_{23}=t_{24}=t_{31}=t_{32}=t_{33}=t_{34}=t_{41}=t_{42}=t_{43}=t_{44}=5$ and $t_{12}=t_{14}=2$

Table 21: Transportation Cost using Linear Regression (In Rs.)

	Kanpur	Kolkata	Surat	Hyderabad	Supply
Bengaluru	165.700	146.712	165.600	146.680	20
Nashik	165.745	165.679	165.655	165.652	14
Neemrana	134.974	165.688	165.693	165.802	27
Sitarganj	134.960	165.717	165.767	165.869	19
Demand	17	18	24	11	

Case 2: Cost matrix for middle value of time interval (In days) for each sources and destinations.
$t_{11}=t_{13}=t_{21}=t_{22}=t_{23}=t_{24}=t_{31}=t_{32}=t_{33}=t_{34}=t_{41}=t_{42}=t_{43}=t_{44}=6$ and $t_{12}=t_{14}=4$
Table 23: Transportation Cost using Linear Regression (in Rs.)

	Kanpur	Kolkata	Surat	Hyderabad	Supply
Bengaluru	165.240	146.345	165.240	146.332	20
Nashik	165.262	165.236	165.218	165.264	14
Neemrana	134.504	165.251	165.219	165.254	27
Sitarganj	134.521	165.257	165.247	165.280	19
Demand	17	18	24	11	

Case 3: Cost matrix for last value of time interval (In days) for each sources and destinations.
$t_{11}=t_{13}=t_{21}=t_{22}=t_{23}=t_{24}=t_{31}=t_{32}=t_{33}=t_{34}=t_{41}=t_{42}=t_{43}=t_{44}=7.5$ and $t_{12}=t_{14}=7$
Table 25: Transportation Cost using Linear Regression (in Rs.)

	Kanpur	Kolkata	Surat	Hyderabad	Supply
Bengaluru	164.550	145.795	164.700	145.810	20
Nashik	164.538	164.571	164.562	164.681	14
Neemrana	133.800	164.595	164.507	164.431	27
Sitarganj	133.864	164.567	164.467	164.398	19
Demand	17	18	24	11	

For multi objective transportation problem, here I have considered risk as a second objective. For that I have constructed risk matrix as shown in table 5 . In which, I have considered risk value 1, 2, 3, 4 and 5 for those sources and destinations in which risk can be very low, low, neutral, high and very high.

Table 27: Risk to Transporting a Unit Product for Particular Source and Destination

	Kanpur	Kolkata	Surat	Hyderabad	Supply
Bengaluru	5	3	5	2	20
Nashik	3	4	1	1	14
Neemrana	4	5	2	3	27
Sitarganj	1	2	4	4	19
Demand	17	18	24	11	

By using the data of table 21 and table 27 the mathematical model of multi objective transportation problem with cost as a function of time is described as follows:

Fuzzy Programming Technique to Solve Multi-Objective Problems

Most of the entrepreneur now a day's do not have a aim of single objective but they wish to target multi objective i.e.' they not only try to minimize cost but try to minimize some recourse so that their business can grow in best of manner. In competitive world entrepreneur need to be aware of competition and should monopolized business. Their important objective could be to minimize risk using the same set of constraints. Such general multi objective linear programming problem can be defined as under [10,11]
Minimize $z_{k}=\sum_{i=1}^{i=n} c_{i}^{k} x_{i}, k=1,2,3,4 \ldots ., r$

Subject to the constraints,
$\sum_{i=1}^{n} a_{i} x_{i}(\leq,=, \geq) B_{j}, j=1,2,3 \ldots \ldots m$,
$x_{i} \geq 0$.
In fuzzy programming technique following procedure applied to solve the multi objective optimization problem [12]:

The formulated multi objective linear programming problem first solve by using single objective function and derive optimal solution say $f_{1}\left(x_{1}, x_{2}, x_{3} \ldots \ldots \ldots x_{n}\right)$ for first objective z_{11} and then obtain other objective value with the same solution say $z_{21} z_{31} z_{41} \ldots z_{k 1}$. Procedure repeats same for $z_{2} \ldots \ldots . . z_{r}$ objectives.

Step 2: Corresponding to above data we can construct a pay off matrix which can give various alternate optimal value.

Table 28: Pay-off Matrix for MOLPP

	Z_{1}	Z_{2}	$\ldots \ldots \ldots$	Z_{r}
$f_{1}\left(x_{1}, x_{2}, x_{3} \ldots \ldots \ldots x_{n}\right)$	Z_{11}	Z_{21}	$\ldots \ldots \ldots$	$\mathrm{Z}_{\mathrm{r} 1}$
$f_{2}\left(x_{1}, x_{2}, x_{3} \ldots \ldots \ldots x_{n}\right)$	Z_{12}	Z_{22}	$\ldots \ldots \ldots$	$\mathrm{Z}_{\mathrm{r} 2}$
$\ldots \ldots \ldots$			$\ldots \ldots \ldots$	
$f_{n}\left(x_{1}, x_{2}, x_{3} \ldots \ldots \ldots x_{n}\right)$	$\mathrm{Z}_{1 \mathrm{n}}$	$\mathrm{Z}_{2 \mathrm{n}}$	$\ldots \ldots \ldots$	Z_{rn}

Here,
$z_{k i}$: indicated optimal solution of ' k th objective using solution of $\mathrm{i}^{\text {th }}$ objective, $k=1,2,3,4 \ldots \ldots, r$ and $i=1,2,3 \ldots \ldots . n$. Or Find out the positive ideal solution (PIS) and negative ideal solution (NIS) for each objective function of the model. Now, by using pay-off matrix or positive ideal solution (PIS) and negative ideal solution (NIS) define a membership function $\mu\left(Z_{k}\right)$ for the $k^{\text {th }}$ objective function. Here two different membership function are utilized to find efficient solution of this multi-objective resource allocation problem and by using this membership function convert the MOLPP into the following model

Model

Maximum λ,
Subject to the constraints
$\lambda \leq \mu\left(Z_{k}\right)$,
$\sum_{i=1}^{m} a_{i} x_{i}(\leq,=, \geq) B_{j}, j=1,2,3 \ldots \ldots n$
$x_{i} \geq 0$,
When we utilize Fuzzy linear membership function [12] then model structure is as follows

Model

Maximum λ,
Subject to the constraints
$z_{k}+\lambda\left(U_{k}-L_{k}\right) \leq U_{k}$,
$\sum_{i=1}^{m} a_{i} x_{i}(\leq,=, \geq) B_{j}, j=1,2,3 \ldots \ldots n$
$x_{i} \geq 0$.
Solution of this model will give you an efficient solution
Algorithm to Solve Multi-Objective Linear Programming Problem
Input: Parameters: $\left(Z_{1}, Z_{2}, \ldots, Z_{k}, n\right)$
Output: Solution of multi-objective programming problem
Solve multi-objective programming problem ($Z_{k} \downarrow, X \uparrow$)
begin
read: problem
while problem = multi-objective programming problem do
for $k=1$ to m do
enter matrix Z_{k}
end
-| determine pay-off matrix
Or
-| the positive ideal solution and negative ideal solution for each objective.
for $\mathrm{k}=1$ to m do
$z_{i j}^{\mathrm{PIS}}=\min \left(z_{i}\right)^{0}$
Under given constraints
end
for $k=1$ to m do
$z_{i j}^{\mathrm{NIS}}=\max \left(z_{i}\right)^{0}$
Under given constraints
end

- find single objective optimization models under given constraints from multi-objective optimization models.
fork=1 to m do
$\max \lambda$
Subject to the constraints:
$\lambda \leq \mu_{z_{i j}}^{E}(x)$
Under given constraints
End
|- find the solution SOPs using Lingo software.
Multi Objective Time Dependent Transportation Problem Solutions by Fuzzy Programming Technique

This section discussed formulation and solution of Time dependent transportation problem by fuzzy programming technique

Using data of table 21 and table 27 we get

Min Z_{1}

$=165.700^{*} x_{11}+146.712^{*} x_{12}+165.600^{*} x_{13}+146.680^{*} x_{14}+165.745^{*} x_{21}+165.679^{*} x_{22}+165.655^{*} x_{23}+165.652^{*} x_{2}$ ${ }_{4}+134.974^{*} x_{31}+165.688^{*} x_{32}+165.693^{*} x_{33}+165.802^{*} x_{34}+134.960^{*} x_{41}+165.717^{*} x_{42}+165.767^{*} x_{43}+165.869^{*} x^{2}$ 44.

$$
\operatorname{Min} Z_{2}=5^{*} x_{11}+3^{*} x_{12}+5^{*} x_{13}+2^{*} x_{14}+3^{*} x_{21}+4^{*} x_{22}+x_{23}+x_{24}+4^{*} x_{31}+5^{*} x_{32}+2^{*} x_{33}+3^{*} x_{34}
$$

$+x_{41}+2^{*} x_{42}+4^{*} x_{43}+4^{*} x_{44}$.
Subject to the constraints
$x_{11}+x_{12}+x_{13}+x_{14}=20$
$x_{21}+x_{22}+x_{23}+x_{24}=14$
$x_{31}+x_{32}+x_{33}+x_{34}=27$
$x_{41}+x_{42}+x_{43}+x_{44}=19$
$x_{11}+x_{21}+x_{31}+x_{41}=17$
$x_{12}+x_{22}+x_{32}+x_{42}=18$
$x_{13}+x_{23}+x_{33}+x_{43}=24$
$x_{14}+x_{24}+x_{34}+x_{44}=11$
Where $\mathrm{xij} \geq \mathrm{O}$ for all i and j

Solution of the Model

Steps to solve multi objective transportation problem using fuzzy programming approach.
PIS and NIS value of first objective function is given by
PIS $=10,695.50, \quad$ NIS $=13,258.76$
PIS and NIS value of second objective function is given by
PIS = 125, NIS = 354
Hence,
$U_{1}=13,258.76, L_{1}=10,695.50, U_{2}=354, L_{2}=125$
$\mathrm{U}_{1}-\mathrm{L}_{1}=2563.26$
$\mathrm{U}_{2}-\mathrm{L}_{2}=229$
Defining membership function by putting values of L_{r} and U_{r} for each objective functions.
$\left(b_{1}\right)$ Linear membership function:

$$
\mu_{1}(X)=\left\{\begin{array}{l}
1, \text { if } Z_{1} \leq 10695.50 \\
1-\frac{Z_{1}-10695.50}{13258.76-10695.50}, \text { if } 10695.50<Z_{1}<13258.76 \\
0, \text { if } Z_{1} \geq 13258.76
\end{array}\right.
$$

$\mu_{2}(\mathrm{X})=\left\{\begin{array}{l}1, \text { if } Z_{2} \leq 125 \\ 1-\frac{Z_{2}-125}{354-125}, \text { if } 125<Z_{2}<354 \\ 0, \text { if } Z_{2} \geq 354\end{array}\right.$
Step 4: For each membership functions defining crisp model using an auxiliary variable h.
$\left(b_{1}\right)$ Linear membership function:
Maximize h;

Subject to the constraints $Z_{1}(X)+h(13258.76-10695.50) \leq 13258.76$;

$$
\begin{gathered}
Z_{1}=165.700 X_{11}+146.712 X_{12}+165.600 X_{13}+146.680 X_{14}+ \\
165.745 X_{21}+165.679 X_{22}+165.655 X_{23}+165.652 X_{24}+ \\
134.974 X_{31}+165.688 X_{32}+165.693 X_{33}+165.802 X_{34}+ \\
134.960 X_{41}+165.717 X_{42}+165.767 X_{43}+165.869 X_{44} ; \\
Z_{2}(X)+h(354-125) \leq 354 \\
Z_{2}=5 X_{11}+3 X_{12}+5 X_{13}+2 X_{14}+3 X_{21}+4 X_{22}+1 X_{23}+1 X_{24}+ \\
4 X_{31}+5 X_{32}+2 X_{33}+3 X_{34}+1 X_{41}+2 X_{42}+4 X_{43}+4 X_{44} \\
X_{11}+X_{12}+X_{13}+X_{14} \leq 20 ; \\
X_{21}+X_{22}+X_{23}+X_{24} \leq 14 ; \\
X_{31}+X_{32}+X_{33}+X_{34} \leq 27 ; \\
X_{41}+X_{42}+X_{43}+X_{44} \leq 19 ; \\
X_{11}+X_{21}+X_{31}+X_{41} \geq 17 ; \\
X_{12}+X_{22}+X_{32}+X_{42} \geq 18 ; \\
X_{13}+X_{23}+X_{33}+X_{43} \geq 24 ; \\
X_{14}+X_{24}+X_{34}+X_{44} \geq 11 ; \\
X_{i j} \geq 0, \forall i, j \\
h \geq 0
\end{gathered}
$$

When we solve this problem with computational software like LINGO then the solution of the model is as follows: The allocations are,

$$
\begin{aligned}
& X_{11}=0, X_{12}=16, X_{13}=0, X_{14}=4 \\
& X_{21}=0, X_{22}=0, X_{23}=7, X_{24}=7 \\
& X_{31}=0, X_{32}=0, X_{33}=17, X_{34}=0 \\
& X_{41}=17, X_{42}=2, X_{43}=0, X_{44}=0
\end{aligned}
$$

The values of objective functions are as follows:
$Z_{1}=10695.80, Z_{2}=125$
Using these allocations we have $Z_{1}=10695.80, Z_{2}=125$ with degree of satisfaction= 0.9998845
The table given below shows the comparison of the given transportation problem with other approaches

Method	Objective value
Goal Programming approach [13]	$Z_{1}=12353.030, Z_{2}=148$.
Fuzzy Programming approach	$Z_{1}=10695.80, Z_{2}=125$

Using Data of Table 23 and Table 27

By using the data of table 4.23 and table 4.27 the mathematical model of multi objective transportation problem with cost as a function of time is described as follows:

Model

MinZ ${ }_{1}$
$=165.240^{*} x_{11}+146.345^{*} x_{12}+165.240^{*} x_{13}+146.332^{*} x_{14}+165.262^{*} x_{21}+165.236^{*} x_{22}+165.218^{*} x_{23}+165.264^{*} x_{2}$
${ }_{4}+134.504^{*} x_{31}+165.251^{*} x_{32}+165.219^{*} x_{33}+165.254^{*} x_{34}+134.521^{*} x_{41}+165.257^{*} x_{42}+165.247^{*} x_{43}+165.280^{*} x^{*}$
44.
$\operatorname{Min} Z_{2}=5^{*} x_{11}+3^{*} x_{12}+5^{*} x_{13}+2^{*} x_{14}+3^{*} x_{21}+4^{*} x_{22}+x_{23}+x_{24}+4^{*} x_{31}+5^{*} x_{32}+2^{*} x_{33}+3^{*} x_{34}$
$+x_{41}+2^{*} x_{42}+4^{*} x_{43}+4^{*} x_{44}$.
Subject to the constraints
$x_{11}+x_{12}+x_{13}+x_{14}=20$
$x_{21}+x_{22}+x_{23}+x_{24}=14$
$x_{31}+x_{32}+x_{33}+x_{34}=27$
$x_{41}+x_{42}+x_{43}+x_{44}=19$
$x_{11}+x_{21}+x_{31}+x_{41}=17$
$x_{12}+x_{22}+x_{32}+x_{42}=18$
$x_{13}+x_{23}+x_{33}+x_{43}=24$
$\mathrm{x}_{14}+\mathrm{x}_{24}+\mathrm{x}_{34}+\mathrm{x}_{44}=11$
Where $\mathrm{xij} \geq 0$ for all i and j
Solution of the model by Fuzzy programming approach
Steps to solve multi objective transportation problem using fuzzy programming approach.
Step 1: Solution of each objective functions.

	Minimum	Maximum
Cost (In Rs.)	$10,665.85$	$13,220.36$
Risk	125	354

Step 2: Defining L_{r} and U_{r} to the minimum and maximum value of each objective functions respectively.
For cost $L_{1}=10,665.85$ and $U_{1}=13,220.36$
For risk $L_{2}=125$ and $U_{2}=354$
Step: (3) Defining membership function by putting values of L_{r} and U_{r} for each objective functions.
$\left(b_{1}\right)$ Linear membership function:
$\mu_{1}(\mathrm{X})=\left\{\begin{array}{l}1, \text { if } Z_{1} \leq 10665.85 \\ 1-\frac{Z_{1}-10665.85}{13220.36-10665.85}\end{array}\right.$, if $10665.85<Z_{1}<13220.36$
$\mu_{2}(\mathrm{X})=\left\{\begin{array}{l}1, \text { if } Z_{2} \leq 125 \\ 1-\frac{Z_{2}-125}{354-125}, \text { if } 125<Z_{2}<354 \\ 0, \text { if } Z_{2} \geq 354\end{array}\right.$
Step 4: For each membership functions defining crisp model using an auxiliary variable h.
$\left(b_{1}\right)$ Linear membership function:

Maximize h;

Subject to the constraints $Z_{1}(X)+h(13220.36-10665.85) \leq 13220.36$;

$$
\begin{aligned}
& Z_{1}=165.240 X_{11}+146.345 X_{12}+165.240 X_{13}+146.332 X_{14}+ \\
& 165.262 X_{21}+165.236 X_{22}+165.218 X_{23}+165.264 X_{24}+ \\
& 134.504 X_{31}+165.251 X_{32}+165.219 X_{33}+165.254 X_{34}+ \\
& 134.521 X_{41}+165.257 X_{42}+165.247 X_{43}+165.280 X_{44} ; \\
& \quad Z_{2}(X)+h(354-125) \leq 354 \\
& Z_{2}=5 X_{11}+3 X_{12}+5 X_{13}+2 X_{14}+3 X_{21}+4 X_{22}+1 X_{23}+1 X_{24}+ \\
& 4 X_{31}+5 X_{32}+2 X_{33}+3 X_{34}+1 X_{41}+2 X_{42}+4 X_{43}+4 X_{44} ; \\
& X_{11}+X_{12}+X_{13}+X_{14} \leq 20 ; \\
& X_{21}+X_{22}+X_{23}+X_{24} \leq 14 ; \\
& X_{31}+X_{32}+X_{33}+X_{34} \leq 27 ; \\
& X_{41}+X_{42}+X_{43}+X_{44} \leq 19 ; \\
& X_{11}+X_{21}+X_{31}+X_{41} \geq 17 ; \\
& X_{12}+X_{22}+X_{32}+X_{42} \geq 18 ; \\
& X_{13}+X_{23}+X_{33}+X_{43} \geq 24 ; \\
& X_{14}+X_{24}+X_{34}+X_{44} \geq 11 ; \\
& \quad X_{i j} \geq 0, \forall i, j ; \\
& h \geq 0 .
\end{aligned}
$$

When we solve this problem with computational software like LINGO then the solution of the model is as follows: The allocations are ,
$X_{11}=0, X_{12}=16, X_{13}=0, X_{14}=4$,
$X_{21}=0, X_{22}=0, X_{23}=7, X_{24}=7$,
$X_{31}=0, X_{32}=0, X_{33}=17, X_{34}=0$,
$X_{41}=17, X_{42}=2, X_{43}=0, X_{44}=0$.
The values of objective functions are as follows
$Z_{1}=10666.32, Z_{2}=125$
Using these allocations we have $Z_{1}=10666.32, Z_{2}=125$ with degree of satisfaction=0.9998176
The table given below shows the comparison of the given transportation problem with other approaches

Method	Objective value
Goal Programming approach [13]	$Z_{1}=10666.320, Z_{2}=125$.
Fuzzy Programming approach	$Z_{1}=10666.32, Z_{2}=125$

Using Data of Table 25 and Table 27

By using the data of table 4.25 and table 4.27 the mathematical model of multi objective transportation problem with cost as a function of time is described as follows:

Model

MinZ_{1}
$=164.550^{*} x_{11}+145.795^{*} x_{12}+164.700^{*} x_{13}+145.810^{*} x_{14}+164.538^{*} x_{21}+164.571^{*} x_{22}+164.562^{*} x_{23}+164.681^{*} x_{2}$ ${ }_{4}+133.800^{*} x_{31}+164.595^{*} x_{32}+164.507^{*} x_{33}+164.431^{*} x_{34}+133.864^{*} x_{41}+164.567^{*} x_{42}+164.467^{*} x_{43}+164.398^{*} x^{2}$ 44.

Subject to the constraints
$X_{11}+X_{12}+X_{13}+X_{14}=20$
$x_{21}+x_{22}+x_{23}+x_{24}=14$
$x_{31}+x_{32}+x_{33}+x_{34}=27$
$X_{41}+X_{42}+X_{43}+X_{44}=19$
$x_{11}+x_{21}+x_{31}+x_{41}=17$
$x_{12}+x_{22}+X_{32}+X_{42}=18$
$x_{13}+x_{23}+x_{33}+x_{43}=24$
$X_{14}+X_{24}+X_{34}+X_{44}=11$
Where $\mathrm{xij} \geq \mathrm{O}$ for all i and j
Solution of the model by Fuzzy programming approach
Steps to solve multi objective transportation problem using fuzzy programming approach.
Step 1: Solution of each objective functions.

	Minimum	Maximum
Cost (In Rs.)	$10,618.04$	$13,166.26$
Risk	125	354

Step 2: Defining L_{r} and U_{r} to the minimum and maximum value of each objective functions respectively.
For cost $L_{1}=10,618.04$ and $U_{1}=13,166.26$
For risk $L_{2}=125$ and $U_{2}=354$
Step: (3) Defining membership function by putting values of L_{r} and U_{r} for each objective functions.
$\left(b_{1}\right)$ Linear membership function:
$\mu_{1}(X)=\left\{\begin{array}{l}1, \text { if } Z_{1} \leq 10618.04 \\ 1-\frac{Z_{1}-10618.04}{13166.26-10618.04}\end{array}\right.$, if $10618.04<Z_{1}<13166.26$
$\mu_{2}(\mathrm{X})=\left\{\begin{array}{l}1, \text { if } Z_{2} \leq 125 \\ 1-\frac{Z_{2}-125}{354-125}, \text { if } 125<Z_{2}<354 \\ 0, \text { if } Z_{2} \geq 354\end{array}\right.$
Step 4: For each membership functions defining crisp model using an auxiliary variable h. $\left(b_{1}\right)$ Linear membership function:

Maximize h;

Subject to the constraints $Z_{1}(X)+h(13166.26-10618.04) \leq 13166.26$;

$$
\begin{aligned}
& Z_{1}=164.550 X_{11}+145.795 X_{12}+164.700 X_{13}+145.810 X_{14}+ \\
& 164.538 X_{21}+164.571 X_{22}+164.562 X_{23}+164.681 X_{24}+ \\
& 133.800 X_{31}+164.595 X_{32}+164.507 X_{33}+164.431 X_{34}+ \\
& 133.864 X_{41}+164.567 X_{42}+164.467 X_{43}+164.398 X_{44} ; \\
& Z_{2}(X)+h(354-125) \leq 354 \\
& Z_{2}=5 X_{11}+3 X_{12}+5 X_{13}+2 X_{14}+3 X_{21}+4 X_{22}+1 X_{23}+1 X_{24}+ \\
& 4 X_{31}+5 X_{32}+2 X_{33}+3 X_{34}+1 X_{41}+2 X_{42}+4 X_{43}+4 X_{44} ; \\
& X_{11}+X_{12}+X_{13}+X_{14} \leq 20 ; \\
& X_{21}+X_{22}+X_{23}+X_{24} \leq 14 ; \\
& X_{31}+X_{32}+X_{33}+X_{34} \leq 27 ; \\
& X_{41}+X_{42}+X_{43}+X_{44} \leq 19 ; \\
& X_{11}+X_{21}+X_{31}+X_{41} \geq 17 ; \\
& X_{12}+X_{22}+X_{32}+X_{42} \geq 18 ; \\
& X_{13}+X_{23}+X_{33}+X_{43} \geq 24 ; \\
& X_{14}+X_{24}+X_{34}+X_{44} \geq 11 ; \\
& \quad X_{i j} \geq 0, \forall i, j ; \\
& h \geq 0 .
\end{aligned}
$$

When we solve this problem with computational software like LINGO then the solution of the model is as follows:

The allocations are,
$X_{11}=0, X_{12}=16, X_{13}=0, X_{14}=4$,
$X_{21}=0, X_{22}=0, X_{23}=7, X_{24}=7$,
$X_{31}=0, X_{32}=0, X_{33}=17, X_{34}=0$,
$X_{41}=17, X_{42}=2, X_{43}=0, X_{44}=0$.
The values of objective functions are as follows
$Z_{1}=10622.10, Z_{2}=125$
Using these allocations we have $Z_{1}=10622.10, Z_{2}=125$ with degree of satisfaction=0.9984059 The table given below shows the comparison of the given transportation problem with other approaches

Method	Objective value
Goal Programming approach [13]	$Z_{1}=10622.930, Z_{2}=125$.
Fuzzy Programming approach	$Z_{1}=10622.10, Z_{2}=125$

Results and Discussion

	h	Minimum of Z_{1}	Minimum of Z_{2}	Solutions
Model 5.1	0.9998845	10695.80	125	$\begin{aligned} & X_{11}=0, X_{12}=16, X_{13}=0, X_{14}=4, \\ & X_{21}=0, X_{22}=0, X_{23}=7, X_{24}=7, \\ & X_{31}=0, X_{32}=0, X_{33}=17, X_{34}=0, \\ & X_{41}=17, X_{42}=2, X_{43}=0, X_{44}=0 \end{aligned}$
$\begin{gathered} \text { Model } \\ 5.3 \end{gathered}$	0.9998176	10666.32	125	$\begin{aligned} & X_{11}=0, X_{12}=16, X_{13}=0, X_{14}=4 \\ & X_{21}=0, X_{22}=0, X_{23}=7, X_{24}=7 \\ & X_{31}=0, X_{32}=0, X_{33}=17, X_{34}=0 \\ & X_{41}=17, X_{42}=2, X_{43}=0, X_{44}=0 \end{aligned}$
$\begin{gathered} \text { Model } \\ 5.5 \end{gathered}$	0.9984059	10622.10	125	$\begin{aligned} & X_{11}=0, X_{12}=16, X_{13}=0, X_{14}=4, \\ & X_{21}=0, X_{22}=0, X_{23}=7, X_{24}=7, \\ & X_{31}=0, X_{32}=0, X_{33}=17, X_{34}=0, \\ & X_{41}=17, X_{42}=2, X_{43}=0, X_{44}=0 \end{aligned}$

Solutions of multi objective transportation problems with cost as a function of time and risk is noted in table above, which shows that for different value of time, objective function of cost is different and objective function of the risk remain same for specific $t_{11}=t_{13}=t_{21}=t_{22}=t_{23}=t_{24}=t_{31}=t_{32}=t_{33}=t_{34}=t_{41}=t_{42}=t_{43}=t_{44}=5$ and $t_{12}=t_{14}=2$ When we form a multi objective transportation problem then the values of the objective functions are $Z_{1}=10695.80, \quad Z_{2}=125$ with degree of satisfaction $=0.9998845$. For specific $t_{11}=t_{13}=t_{21}=t_{22}=t_{23}=t_{24}=t_{31}=t_{32}=t_{33}=t_{34}=t_{41}=t_{42}=t_{43}=t_{44}=6$ and $t_{12}=t_{14}=4$. When we form a multi objective transportation problem then the values of the objective functions are $Z_{1}=10666.32$, $Z_{2}=125$ with degree of satisfaction $=0.9998176$. For specific $t_{11}=t_{13}=t_{21}=t_{22}=t_{23}=t_{24}=t_{31}=t_{32}=t_{33}=t_{34}=t_{41}=t_{42}=t_{43}=t_{44}=7.5$

When we form a multi objective transportation problem then the values of the objective $Z 1=10622.10, Z 2=125$ with degree of satisfaction=0.9984059. functions are

Conclusion

This paper discussed time dependent multi objective transportation problem and their solutions by fuzzy programming technique. Such kind of solution is useful in technology based today's atmosphere. With time dependent multi objective transportation problem we minimize the cost and minimize risk with respect to time.

References

1. JK Sharma (2009),"Operation Research, Theory and its Applications", Macmillan publishing house, page no [27-70]
2. A.J Khan and D.K. Das, New Row Maxima method to solve Multi-objective transportation problem under fuzzy conditions, International Journal of creative Mathematical sciences \& technology,2012, pp.42-46.
3. A.J Khan and D.K. Das, EMV Approach to solve Multi-objective transportation problem under Fuzzy Conditions,Vol. 1 issue 5,oct-2013,pp. 8-17
4. Mohammad Asim Nomani, Irfan Ali \& A. Ahmed (2017), A new approach for solving multi objective transportation problems, International Journal of Management Science and Engineering Management, 12:3, 165-173, DOI: 10.1080/17509653.2016.1172994.
5. Sankar Kumar Roy, Gurupada Maity, Gerhard Wilhelm Weber and Sirma Zeynep Alparslan Gök (2017), Conic scalarization method to solve multi objective transportation problem with interval goal, Ann Oper Res (2017) 253:599-620, DOI 10.1007/s10479-016-2283-4.
6. Sankar Kumar Roy Gurupada Maity Gerhard-Wilhelm Weber (2017), Multi-objective twostage Grey transportation problem with utility approach with goals, CEJOR (2017) 25:417-439, DOI 10.1007/s10100-016-0464-5.
7. Rizk M. Rizk-Allah, Aboul Ella Hassanien, Mohamed Elhoseny (2018), A multi-objective transportation model under neutrosophic environment, Computers and Electrical Engineering 69, pp. 705-719.
8. Srikant Gupta, Irfan Ali \& Aquil Ahmed (2018), Multi choice multi objective capacitated transportation problem-A case study of uncertain demand and supply, Journal of Statistics and Management Systems, 21:3, 467-491, DOI: 10.1080/09720510.2018.1437943.
9. Ronak Desmukh and Jayesh M. Dhodiya (2019), Time dependent transportation problems and their solutions, S.V.National Institute of technology, pp. 1-169.
10. Ibrahim A Baky, Solving multi-level multi objective linear programming problem through fuzzy goal programming approach, Applied Mathematical modelling, 34(2010), 2377-2387
11. Solution of multi-objective transportation problem via fuzy programming algorithm, science journal of applied mathematics and statistics, 2014,2(4):71-77
12. H.-J. Zimmermann, Fuzzy programming and linear programming with several objective functions, Fuzzy Sets and Systems 1 (1978) 45-55
13. Waiel F. Abd El-Wahed, Sang M. Lee (2006), Interactive fuzzy goal programming for multiobjective transportation problem, Omega 34, pp. 158-166.

[^0]: * Sheth C. D. Barfiwala College of Commerce, Surat, Gujarat, India.

 Rofel College Vapi, Gujarat, India.

