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ABSTRACT 
 

This paper presents a comprehensive mathematical framework for dynamic manpower planning aimed at 
supporting sustainable organizational growth. The proposed model integrates workforce inflows, internal 
transitions, skill development, attrition, and demand variability within a multi-period planning horizon. Using 
systems of difference equations and optimization techniques, the framework enables organizations to 
forecast workforce requirements, evaluate policy alternatives, and balance cost efficiency with long-term 
sustainability. The model accounts for both quantitative and qualitative aspects of manpower, allowing 
decision-makers to align human resource strategies with organizational objectives while adapting to 
external and internal changes. The applicability of the framework is demonstrated through theoretical 
analysis, highlighting its potential to improve workforce stability, productivity, and resilience. This research 
contributes to the existing manpower planning literature by offering a flexible, analytically robust approach 
suitable for modern, growth-oriented organizations. 
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Introduction 

Dynamic manpower planning focuses on the systematic analysis of workforce flows—such as 
recruitment, promotion, training, attrition, and retirement—over multiple time periods. Unlike static models 
that assume fixed demand and supply conditions, dynamic models explicitly incorporate time-dependent 
variables and feedback mechanisms. This allows organizations to evaluate how present workforce 
decisions influence future capabilities, costs, and performance. Mathematical modeling plays a central role 
in this process by translating organizational realities into quantifiable structures, enabling managers to 
simulate alternative scenarios and assess trade-offs between competing objectives. 

Sustainable organizational growth depends not only on short-term efficiency but also on the long-
term availability of skills, leadership pipelines, and institutional knowledge. Poor manpower planning can 
lead to skill shortages, excessive labor costs, employee burnout, or underutilization of talent. Dynamic 
models help mitigate these risks by capturing the interdependencies between workforce size, skill 
composition, productivity, and learning effects. Through tools such as difference equations, stochastic 
processes, system dynamics, and optimization techniques, organizations can design manpower policies 
that balance growth ambitions with workforce sustainability. 

A mathematical framework for dynamic manpower planning also supports evidence-based human 
resource management. By formalizing assumptions and constraints, mathematical models reduce reliance 
on intuition alone and promote consistency in planning decisions. They allow for the integration of 
uncertainty—such as fluctuating demand, varying attrition rates, or policy changes—into the planning 
process. Moreover, these models facilitate sensitivity analysis, helping decision-makers understand which 
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parameters have the greatest impact on workforce outcomes and where managerial intervention is most 
effective. 

As organizations increasingly pursue sustainability as a strategic priority, manpower planning 
models must account for social and economic dimensions alongside operational performance. Dynamic 
mathematical frameworks enable the evaluation of long-term workforce stability, equitable career 
progression, and continuous skill development, all of which are critical for resilient growth. This introduction 
sets the foundation for exploring dynamic manpower planning models, emphasizing their mathematical 
structure, practical relevance, and role in supporting sustainable organizational development in an 
uncertain and competitive landscape. 

Development of Manpower Modeling & Optimization 

An industry's capacity to predict its workforce needs is essential.  On one hand, these predictions 
help businesses with their workforce planning methods, while on the other, they provide job searchers a 
way to gauge the desirability of a certain industry.  Government policymakers may benefit greatly from 
labor demand and supply forecasts because they help them avoid duplicative investments and promote 
sustainable, balanced growth in their respective industries.  Under- or over-supply of labor, for example, 
might result from predictions based on faulty market research.  The majority of the time, inaccurate 
forecasts of labor supply and demand is caused by static and unilateral analysis.  When it comes to cutting-
edge and emerging industries, these methods can produce incredibly inaccurate predictions. These sectors 
are known for their complex interdependencies with other industries, rapidly increasing manpower demand, 
and the length of time it takes to develop the necessary human resources.  Making decisions in every 
sector requires guesswork on demand and performance in the future.  For instance, factors such as the 
amount to manufacture, the amount of capacity and other resources to acquire, the goods to create, the 
amount of funding required by the firm, and so on.  On occasion, decision-makers have a tendency to make 
the simplistic prediction, thinking that the future would follow the same pattern as the past.  The use of 
mathematical models or statistical methods to predict future demand and supply is also common in other 
contexts.  Unfortunately, dynamic structural analysis and the detection of delayed feedback effects are not 
yet possible with the current approaches because of their inherent shortcomings. 

Creating “Mathematical Modeling 

We have by now understood the role of a “Mathematical Model” in addressing challenges in an 
organization. Now let us understand the process involved in creating a “Mathematical Model”. 

Step 1: Collect organization data of projects with respect to the X’s as defined in sec 3.6. Note 
that not all the X’s defined in sec 3.6 will be measured in the projects and thus only project level data for 
measured X’s would be available. Also, by way of process consultancy to projects it has to be enforced 
that certain critical X’s for the project must be measured. 

Step 2: Sanitize the data to eliminate any data format errors in the data dump. The typical activities 
here involve checking for blanks in the data, the cell formats are not consistent therefore numbers get 
treated as text, data time entries are not accurate or missing. Also there are cases where some data from 
table is left shifted or right shifted. These have to be manually checked most of the time. Larger corporations 
with the means and resources do use data bases with queries capable of sanitizing the data in the database 
before it is extracted. 

Step 3: Conduct “statistical tests” on the data to identify its mean, “Standard Deviation”, control 
limits and range. The outliers values have to be removed from the data set as they are not the true situation 
but an anomaly which requires different treatment and its “Root Cause Analysis”. Also these outliers are 
generally a one off case and do not represent the actual process performance. We also need to check the 
data for stability and normality using mathematical tools like Anderson – Darling tests. Depending on 
whether data is normal or not the “statistical treatments” may differ. However, we can safely assume for 
non-normal data that after significant data is collected it will move towards normality. This can be 
corroborated by the Central Limits Theorem. 

Step 4: Using the data captured compute metrics which are critical for the project as defined and 
which will directly contribute to the organizations “business objectives” and the challenge which the 
organization is trying to address using the “Mathematical Model”. These metrics are the X’s as defined in 
the “Tier I” model for “Profitable Growth” or “Customer Satisfaction”. This way the oscillating / roll-up of the 
“Mathematical Models” between the tiers can be established. 

Step 5: Using Liner Regression prepare a “Mathematical Model”.  

Step 6: Deploy the prediction model in the projects of “Tier III” to address the challenge in 
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question. It may be required to calibrate the “Mathematical Model” to suit the project. 

 

Fig 1: Flowchart for “Mathematical Modelling” 

Steel structure manufacturing companies have a significant responsibility in production planning 
and scheduling, and they rely on component processing times as a reference when they construct 
production plans overall and decide which nodes to use for certain components. Production planning and 
complete process scheduling are two areas where businesses rely heavily on accurate man-hour 
predictions.  What this means is that the processing time is unaltered when the same kind of machine is 
used to process the same components and operations. As a result, production hours fluctuate 
uncontrollably, leading to a certain deviation between the actual processing hours and the used processing 
hours.  

DETAILS OF THE MODEL  

 It is thought of as an organization with two tiers that makes policy choices at random intervals.  
Some people leave the company at random intervals between decision-making epochs.  A person's 
resignation results in a loss of man-hours for the company.  People are free to move between grades as 
they choose.  The distribution of thresholds follows an exponential distribution, and each grade has its own 
unique level.  Neither of their different criteria affects the loss of man-hours.  An exponential distribution is 
thought to govern the loss of man-hours.  The intervals between decisions are exponentially correlated and 
swappable variables when the total number of lost man-hours above the sum of two grade criteria, 
recruiting is initiated.  

Notations 

Ti: the interval between choices i = 1, 2,..., with f(.) and F(.) as its cumulative distribution function 
and probability density function, respectively 

EXPECTED TIME AND VARIANCE OF TIME TO RECRUITMENT  

Both the variance and the anticipated time to recruitment may be expressed analytically.  When 
the total number of lost man-hours is more than the sum of Y1 and Y2, recruiting is initiated.  Assuming 
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that time t has passed, the likelihood that the human resources system would fail is given by 

P(W,t)=Σ∞k=0 

{The likelihood that inside the interval (0, t] there are precisely k policy decisions} expectation that 
the total harm to the workforce system will not surpass a certain point. 

=∑ [Fk(t) − Fk + 1(t)]P[∞
k=0 ∑ (Xi1 +  Xi2) < (Yi1 +  Yi2 )]∞

i=1  

Given that Y1 and Y2 are parameters θ1 and θ2 in an exponential distribution, the probability 
density function of Y1 + Y2 is 

=∫ k1(u) k2(y − u)du
y

0
 

=∫ θ1e−θ1u θ2e−θ2(y−u)du
y

0
 

=
θ1θ2

(θ1−θ2)
(e−θ2y e−θ1y) 

Now, 

P[∑ (Xi, 1 + Xi, 2) < (Y1 + Y2)]k
i=1  

=
θ1θ2

(θ1−θ2)
∫0∞(e−θ2y e−θ1y) Qk(y)dy 

=
θ1θ2

(θ1−θ2)
 ∫0∞e−θ2yQk(y)dy−∫0∞e−θ1yQk(y)dy 

=
θ1[q∗(θ2)−θ2[q∗(θ1)]k

(θ1−θ2)
  

One possible form for the equation  is as 

P(W> t) = ∑ [Fk(t) − Fk + 1(t)][∞
k=0

θ1[q∗(θ2)]k−θ2[q∗(θ1)]k

(θ1−θ2)
] 

=1-(
θ1

(θ1−θ2)
){ ∑ [Fk(t)[q ∗ (θ2)]k−1 − ∑ [Fk(t)[q ∗ (θ2)]k]∞

k=1 ]∞
k=1 } 

+(
θ1

(θ1−θ2)
){ ∑ [Fk(t)[q ∗ (θ1)]k−1 − ∑ [Fk(t)[q ∗ (θ1)]k]∞

k=1 ]∞
k=1 } 

=1-(
θ1

(θ1−θ2)
)[1- q ∗ (θ2)]∑ Fk(t)[q ∗ (θ2)]k−1∞

k=1  

+(
θ1

(θ1−θ2)
) [1- q ∗ (θ1)]∑ Fk(t)[q ∗ (θ1)]k−1∞

k=1  

L(t)=1-P(W>t) 

=(
θ1

(θ1−θ2)
) [1- q ∗ (θ2)]∑ Fk(t)[q ∗ (θ2)]k−1∞

k=1  

+(
θ1

(θ1−θ2)
) [1- q ∗ (θ1)]∑ Fk(t)[q ∗ (θ1)]k−1∞

k=1  

We get by applying the Laplace-Stieltjes transform on both sides. 

L*(s) =(
θ1

(θ1−θ2)
) [1- q ∗ (θ2)]∑ F ∗ k(s)[q ∗ (θ2)]k−1∞

k=1  

-(
θ2

(θ1−θ2)
) [1- q ∗ (θ1)]∑ F ∗ k(s)[q ∗ (θ1)]k−1∞

k=1  

Does {Ti} follow the exponential distribution with a probability density function for each of its 
exchangeable and constantly connected random variables? 

f(t) =(
1

𝐚
) e−(

t

𝐚
)
, a > 0, 0 < t<∞ 

Based on Gurland's (1995) finding, we may determine the characteristic function of {Ti} as 

Ψ(Υ1, Υ2, … . , Υk)=|
1 − iΥ1a −iΥ1aR −iΥ1aR
−Υ2aR 1 − iΥ2a −iΥ2aR
−iΥkaR −iΥkaR 1 − iΥka

|−1 

in addition to the cumulative distribution parameter of 

∑ Ti

k

i=1
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As 

Fk(t)= 
1−R

1−R+kR
∑ (

kR

1−R+kR

∞
i=0 )i 

Ψ(k+i,t/c)

(k+i−1)!
 

= 
1−R

1−R+kR
∑ (

kR

1−R+kR

∞
i=0 )i 

Ψ(k+i,t/c)

(k+i−1)!
 ∫ e−xxk+i+1t/c

0
 dx 

= 
1−R

1−R+kR
∑ (

kR

1−R+kR

∞
i=0 )i[1-∑ (

e−t/c(t/c)k+i+1

(k+i−j−1)!

k+i+1
i=0 ] 

With the Laplace-Stieltjes transform applied to both sides, we get 

F*k(s) = 
s(1−R)

1−R+kR
 ∑ (

kR

1−R+kR

∞
i=0 )i 

∫ e−st[1 − ∑ (
e−t/c(t/c)k+i+1

(k+i−j−1)!

k+i+1
j=0

t/c

0
]dt 

=
s(1−R)

1−R+kR
 ∑ (

kR

1−R+kR

∞
i=0 )i [

1

s
−

c

1+cs
∑ (1 + cs)−jk+i−1

j=0 ] 

=
(1−R)

1−R+kR
 ∑ (

kR

1−R+kR

∞
i=0 )i (1 + cs)−(k+i) 

= 
(1−R)

1−R+kR
∑

1

(1+cs)k
∞
i=0 [

kR

(1−R+kR)1+cs
]i 

=
(1−R)(1+cs)l−k

(1 − R) (1 + cs) + kRcs 
 

[d/ds (F*k (s))]s=0 =
c(1−k)(1− R)2−c(1− R)2−kRc(1−R)

(1− R)2  

=- kc /(1—R) 

= —ak 

[d2/ds2 (F*k (s))]s=0 = c2{2k+k(k-1)+ 
2kR

1−R
+

2k2R

1−R
+

2k2R2

(1−R)2
} 

=c2{k2+k+ 
2kR

1−R
+

2k2R

1−R
+ (1 +

R

1−R
)} 

=c2{ k2(1 +
R

(1−R)2)+k (1 +
2R

1−R
)} 

= c2{ k2(1 +
R2

(1−R)2
)+k (

1+R

1−R
)} 

By plugging in the values, we get 

E(W) = -[d/ds (L* (s))]s=0 

=(
θ2

(θ1−θ2)
) [1- q ∗ (θ2)]∑ ak(s)[q ∗ (θ2)]k−1∞

k=1  

-(
θ2

(θ1−θ2)
) [1- q ∗ (θ1)]∑ ak(s)[q ∗ (θ1)]k−1∞

k=1  

= (
a

(θ1−θ2)
) {

θ1

1− q∗(θ2)
−

θ2

1− q∗(θ1)
} 

E(W2) = -[d2/ds2 (L* (s))]s=0 

=(
θ2

(θ1−θ2)
) [1- q ∗ (θ2)]∑ c2[q ∗ (θ2)]k−1∞

k=1   (
k2(1+R2

(1−R)2 +
k(1+R)

1−R
) 

-(
θ2

(θ1−θ2)
) [1- q ∗ (θ1)]∑ c2[q ∗ (θ1)]k−1∞

k=1   (
k2(1+R2)

(1−R)2 +
k(1+R)

1−R
) 

= (
c2θ1

θ1−θ2
) (

1+R2

(1−R)2) [1- q ∗ (θ2)] ∑ k2[q ∗ (θ2)]k−1∞
k=1  

+(
c2θ1

θ1−θ2
) (

1+R

1−R
) [1- q ∗ (θ2)] ∑ k[q ∗ (θ2)]k−1∞

k=1  

-(
c2θ2

θ1−θ2
) (

1+R2

(1−R)2) [1- q ∗ (θ1)] ∑ k2[q ∗ (θ1)]k−1∞
k=1  

+(
c2θ2

θ1−θ2
) (

1+R

1−R
) [1- q ∗ (θ1)] ∑ k[q ∗ (θ1)]k−1∞

k=1  

=(
c2θ1

θ1−θ2
) (

1+R2

(1−R)2) 
[𝟏+ q∗(θ2)] 

[𝟏− q∗(θ2)]𝟐 
+ (

c2θ1

θ1−θ2
) (

1+R

1−R
) 

1

[𝟏− q∗(θ2)]
 

-(
c2θ2

θ1−θ2
) (

1+R2

(1−R)2) 
[𝟏+ q∗(θ1)] 

[𝟏− q∗(θ1)]𝟐- (
c2θ2

θ1−θ2
) (

1+R

1−R
) 

1

[𝟏− q∗(θ1)]
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=(
a2θ1

θ1−θ2
) 

(1+R2)[𝟏+ q∗(θ2)] 

[𝟏− q∗(θ2)]𝟐
- (

a2θ1

θ1−θ2
) (

(1+R)(1−R)

[𝟏− q∗(θ2)]
) 

-(
a2θ2

θ1−θ2
) 

(1+R2)[𝟏+ q∗(θ1)] 

[𝟏− q∗(θ1)]𝟐
- (

a2θ2

θ1−θ2
) (

(1+R)(1−R)

[𝟏− q∗(θ1)]
) 

=(
θ1

θ1 − θ2
)

a2

[1 − q∗(θ2)]2
{(1 + R2)[1 + q∗(θ2)] + (1 − R2)[1 − q∗(θ2)]}

 − (
θ2

θ1 − θ2
)

a2

[1 − q∗(θ1)]2
{(1 + R2)[1 + q∗(θ1)] + (1 − R2)[1 − q∗(θ1)]}

=(
θ1

θ1 − θ2
)

a2

[1 − q∗(θ2)]2
{2 + 2R2q∗(θ2)}

 − (
θ2

θ1 − θ2
)

a2

[1 − q∗(θ1)]2
{2 + 2R2q∗(θ1)}

 

=
2a2

θ1−θ2
[
θ1(1+R2q∗(θ2)))

[1−q∗(θ2)]2
−

θ2(1+R2q∗(θ1)))

[1−q∗(θ1)]2
] 

For the product of X1 and X2, the density function is 

q(x) = ∫₀ˣ g(u)h(x-u) du = (α₁α₂(e (−α₂x) − e (−α₁x)))/(α₁ − α₂) 

q*(θ₁) = ∫₀∞ [α₁α₂(e (−α₂x) − e (−α₁x))/(α₁ − α₂)] e(−θ₁x) dx 

= (α₁α₂/(α₁ − α₂)) [1/(θ₁+α₂) − 1/(θ₁+α₁)] 

= α₁α₂/((θ₁+α₁)(θ₁+α₂)) 

Also, 

q∗(θ2)=(θ2+α1)/(θ2+α2)α1α2 

Equation  yields 

E(W) = (a/(θ₁−θ₂)) [θ₁(θ₂+α₁)(θ₂+α₂)/[θ₂²+θ₂(α₁+α₂)] − θ₂(θ₁+α₁)(θ₁+α₂)/[θ₁²+θ₁(α₁+α₂)]] 

Equation becomes 

E(W2) =
(

{θ1}

{θ1− θ2}
) {2a2[ (θ2 + α1)(θ2 + α2)]2}

{[ (θ2 + α1)(θ2 + α2) −  α1α2
]

2
} {

{(θ2+α1)(θ2+α2)+R1α2
2α }

{(θ2+α1)(θ2+α2)}
}

− (
{θ2}

{θ1 − θ2}
) {2a2[ (θ1 + α1)(θ1 + α2)]2} {[

(θ1 + α1)

(θ1 + α2)

− α1α2
]

2

} {
{(θ1 + α1)(θ1 + α2) + R1α2

2α }

{(θ1 + α1)(θ1 + α2)}
}

= (
{θ1}

{θ1 − θ2}
) {

2a2(θ2 + α1)

(θ2 + α2)[ (θ2 + α1)(θ2 + α2) + R1α2\big
2α ]

} {
R

[ θ2
2 + θ2(α1+α2)\big]

2} 

A numerical example  

Changes to the parameters allow for numerical analysis of the analytical expressions of the 
expected and variance of the time to recruitment.  By changing the mean of the interdecision durations (ii) 
changing α1-the loss of manhours of grade I and (iii) Table changing α2-the loss of manhours of grade II, 
the anticipated time to recruitment and its variation are computed and shown. 

The expected time and variance of the time to recruitment for different values of the parameters 
θ1 and θ2 are respectively, and they increase as the mean of the interdecision times and the loss of 
manhours of grades I and II increase.  As the values of the grade I and grade II thresholds grow, the 
predicted time to recruitment and the variance of the time to recruitment decrease respectively. 

Conclusion 

Dynamic manpower planning models provide a powerful mathematical framework for aligning 
workforce capabilities with long-term organizational objectives in an increasingly complex and uncertain 
environment. By integrating tools such as optimization, stochastic processes, system dynamics, and 
forecasting techniques, these models move beyond static headcount planning to support adaptive, data-
driven decision-making. They enable organizations to anticipate future skill requirements, manage 
workforce flows, and balance costs, productivity, and sustainability over time. 
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From a strategic perspective, dynamic models facilitate sustainable organizational growth by 
ensuring that human capital evolves in tandem with market demands, technological change, and 
demographic shifts. They allow decision-makers to evaluate multiple scenarios, assess risks, and design 
robust policies for recruitment, training, promotion, and retention. This forward-looking capability reduces 
inefficiencies, mitigates talent shortages or surpluses, and enhances organizational resilience. 

Moreover, the mathematical rigor underlying dynamic manpower planning strengthens 
transparency and accountability in workforce decisions. By explicitly modeling constraints, objectives, and 
trade-offs, these frameworks support evidence-based planning and continuous improvement. When 
embedded within organizational information systems and complemented by managerial judgment, they 
become practical tools for long-term human resource sustainability. 

In conclusion, dynamic manpower planning models represent a critical bridge between 
quantitative analysis and strategic human resource management. Their effective implementation can help 
organizations achieve sustainable growth by optimizing workforce structures, fostering adaptability, and 
ensuring that human capital remains a core driver of competitive advantage in a rapidly changing world. 
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