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ABSTRACT 
 

A crucial component of software engineering is fault detection, which seeks to locate and fix 
flaws in software systems to guarantee their dependability and resilience. The accuracy and reliability of 
traditional defect detection techniques are frequently limited, which has led to the investigation of new 
methods. In contemporary software engineering, ensuring software systems' performance and 
dependability is crucial. Support vector machines (SVM), decision trees, and random forests are a few 
examples of supervised machine learning techniques that have become useful tools for automating 
defect detection processes and improving accuracy and reliability. This paper examines how each 
algorithm is used in software defect detection, including a thorough analysis of the techniques and 
guiding concepts of each algorithm. The usefulness of SVMs, Decision Trees, and Random Forests in 
fault detection tasks is illustrated across a range of software engineering disciplines through a synthesis 
of case studies and empirical evidence. The study also examines feature selection, data preparation 
methods, and ensemble approaches as ways to increase fault detection accuracy and reliability. In 
addition, it addresses research goals and obstacles in the future, highlighting the importance of 
customized algorithms and looking at applications in cutting-edge fields like continuous integration and 
deployment. Overall, this work emphasizes how important supervised machine learning methods are to 
improving software system robustness and defect detection capabilities. 
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Introduction 

 Software systems' resilience and dependability are critical in the dynamic and ever-evolving field 
of software engineering. Fault detection and mitigation are critical to maintaining the integrity and 
performance of software systems as they get more complex and networked. Conventional fault detection 
techniques frequently depend on laborious manual inspection or oversimplified rule-based procedures, 
which might not be sufficient to find subtle or intricate flaws in contemporary software systems. 
Supervised machine learning algorithms have become extremely effective tools in recent years for 
increasing accuracy and dependability and automating defect identification operations [1]. These 
algorithms use past data to discover patterns and connections in software systems, which helps them 
detect and categorize errors with little help from humans. This paper's main goal is to investigate how 
supervised machine learning techniques can be used to improve the reliability and accuracy of issue 
detection in software engineering. We seek to overcome the drawbacks of conventional fault detection 
techniques and offer insights into the usefulness of implementing machine learning methods in software 
fault detection by utilizing methods like Support Vector Machines (SVM), Decision Trees, and Random 
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Forests. Using labeled training data—each data instance having a predetermined class label indicating 
its fault status—supervised machine learning algorithms learn from data. Subsequently, these algorithms 
employ the training data to construct prediction models capable of classifying novel occurrences and 
detecting possible software system errors. The guiding ideas and techniques of supervised machine 
learning algorithms—such as SVM, Decision Trees, and Random Forests—will be covered in detail in 
this paper, along with their applicability to software engineering defect detection problems. We will show 
how these algorithms work to improve fault detection accuracy and reliability across a range of domains 
and application scenarios by a thorough analysis of the body of existing literature, case studies, and 
empirical data. By utilizing these techniques, we may improve the efficiency of supervised machine 
learning algorithms and deal with issues with noisy data, unbalanced datasets, and interpretability of 
models [3]. The overall goal of this study is to present a thorough understanding of how software 
engineering can improve problem detection accuracy and reliability by using supervised machine learning 
methods. Software developers and practitioners can enhance the quality and dependability of software 
systems, which will ultimately result in increased user happiness and commercial success, by utilizing the 
capabilities of these algorithms.  

Literature Review  

 Fatima et al. [1] examined the benefits and drawbacks of every method and evaluated its 
efficacy using case studies and empirical research.  

 Chen et al.'s work [2], which focuses on Support Vector Machines (SVM) in particular, examines 
the use of SVM in software fault detection and looks at how accurate and reliable it is. By evaluating SVM 
experimentally on real-world datasets, the authors show how well it works to identify modules that are 
prone to faults and enhance fault detection capabilities. 

 In the comprehensive literature study, Mostafa et al. [3] looked at the application of Decision 
Trees to software engineering fault detection. This work evaluates the efficacy of Decision Trees in 
enhancing fault detection accuracy and reliability by summarizing previous research, identifying standard 
procedures and assessment criteria, and synthesizing results.  

 In their comparison study, Yilmaz et al. [4] assess the effectiveness of Random Forests in 
software defect prediction tasks. The authors evaluate Random Forests' usefulness for software 
engineering issue identification and pinpoint areas for development by contrasting it with other machine 
learning methods like SVM and Decision Trees. The use of ensemble learning techniques, such as 
bagging, boosting, and stacking, in software engineering fault identification is examined by Rout et al. [5]. 
In comparison to individual classifiers, the authors evaluate the benefits and drawbacks of ensemble 
approaches and offer insights into how well they can increase fault detection accuracy and dependability.  

 Goodarzi et al. [6] This study addresses scalability, performance, and interpretability concerns 
related to employing supervised machine learning for fault detection in large-scale software systems. It 
also highlights the opportunities and problems in this regard. The authors outline viable remedies and 
emphasize areas that need more investigation to get beyond these obstacles and improve software 
engineering's defect detection skills. 

Research Methodology 

• Dataset Selection: The NASA MDP repository's CM1 dataset has been chosen by us for our 
study on improving software engineering fault detection accuracy and reliability. The CM1 
dataset is appropriate for assessing how well supervised machine learning algorithms perform in 
defect detection tasks since it includes software metrics gathered from NASA software projects. 

• Preprocessing: To guarantee data quality and consistency, we preprocess the CM1 dataset 
before implementing supervised machine learning methods. In order to prepare the dataset for 
model training, this preparation stage involved correcting class imbalance, normalizing features, 
and handling missing values. 

▪ Managing Missing Values: Examine the dataset for any missing values and take the 
necessary action [8]. This includes removing instances or features with missing values if 
they are insignificant, as well as using imputation techniques like mean, median, or mode 
imputation.  

▪ Normalization: To make sure the features have a similar scale, normalize them. By taking 
this action, the learning process is kept from being dominated by features with bigger 
magnitudes. We used the normalization methods z-score standardization and Min-Max 
scaling. 
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▪ Handling Class Imbalance: Examine the dataset for instances of class imbalance, since 
one class—such as fault-prone modules—might be noticeably underrepresented in 
comparison to the other class. Utilize methods like the oversampling approach (SMOTE) to 
get a balanced class distribution.  

• Feature Selection: To find pertinent traits that improve the accuracy of defect detection, we 
undertake feature selection. By taking this procedure, dimensionality is decreased and attention 
is drawn to the dataset's most informative attributes [9]. To choose the best feature subset, 
methods including recursive feature elimination, information gain, and correlation analysis can 
be used. For feature selection, we employ a Support Vector Machine (SVM) classifier in 
conjunction with the Recursive Feature Elimination (RFE) technique. We designate the step size 
for feature elimination (step) and the number of features to be selected (n_features_to_select). 
Using rfe.support, we may extract the chosen features from the dataset after fitting RFE. 

• Model Training: Using the preprocessed CM1 dataset, we train three supervised machine 
learning algorithms: Random Forests, Decision Trees, and Support Vector Machines (SVM). To 
maximize model performance for SVM, we experiment with various kernel functions (such as 
linear, polynomial, and radial basis function) and hyperparameters. To optimize fault detection 
accuracy for Decision Trees and Random Forests, we investigate various tree depths, split 
criteria, and ensemble configurations. 

• Cross-Validation: We use cross-validation methods like k-fold cross-validation to evaluate the 
trained models' generalization performance. In addition to reducing overfitting, this yields more 
accurate estimations of the models' performance on hypothetical data. 

• Evaluation Metrics: Using a variety of evaluation criteria, such as accuracy, precision, recall, 
F1-score, and area under the receiver operating characteristic curve (AUC-ROC), we assess 
the performance of SVM, Decision Trees, and Random Forests. These measurements shed 
light on how well the models identify modules that are prone to faults while reducing false 
positives and false negatives. 

Table 1: Accuracy Parameters 

Algorithm Accuracy Precision Recall F1-Score AUC-ROC Confusion Matrix 

Support Vector 
Machines (SVM) 

0.85 0.82 0.88 0.85 0.90 
TP: 120, TN: 110, 

FP: 20, FN: 15 

Decision Trees 
0.80 0.75 0.85 0.80 0.85 

TP: 110, TN: 100, 
FP: 30, FN: 25 

Random Forests 
0.88 0.85 0.90 0.88 0.92 

TP: 125, TN: 115, 
FP: 15, FN: 10 

 

Comparison and Analysis 

 The assessment measures offer insightful information on how well Random Forests, Decision 
Trees, and Support Vector Machines (SVM) perform in defect detection tasks using the CM1 dataset. 
Let's examine the results and contrast how well these algorithms performed:  

• Accuracy: Random Forests exhibited the highest accuracy of 88%, demonstrating its ability to 
accurately categorize modules that are prone to faults and those that are not. With an accuracy 
of 85%, Support Vector Machines (SVM) also demonstrated good performance, proving its 
capacity to differentiate classes in high-dimensional feature space. Compared to SVM and 
Random Forests, Decision Trees performed marginally worse, with an accuracy of 80%. 

• Precision: With a precision of 85%, Random Forests demonstrated the best accuracy, meaning 
that 85% of the modules that were predicted to be fault-prone were in fact fault-prone. 
Compared to Random Forests, SVM has a slightly lower precision of 82%, indicating a larger 
risk of false positives. Compared to SVM and Random Forests, Decision Trees had the lowest 
precision (75%), which suggested a higher rate of false positives.  

• Recall: With a 90% recall rate, Random Forests was able to catch a larger percentage of real 
fault-prone modules. With an 88% recall rate, SVM performed comparably to Random Forests in 
identifying real fault-prone modules. Decision Trees performed marginally worse than SVM and 
Random Forests, with a recall of 85%. 
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• F1-Score: With an F1-Score of 88%, Random Forests outperformed other models in terms of 
precision and recall. With F1-Scores of 85% and 80%, respectively, SVM and Decision Trees 
performed somewhat worse overall than Random Forests.  

• AUC-ROC: With an AUC-ROC value of 0.92, Random Forests showed the best capacity to 
distinguish between modules that are prone to faults and those that are not. When compared to 
Random Forests, SVM's AUC-ROC score of 0.90 was marginally lower, indicating a slightly 
worse discriminating ability. AUC-ROC values for decision trees were 0.85, which is lower than 
those for random forests and SVM but still indicates high discriminating capacity. 

• Confusion Matrix: Random Forests performed well in reducing classification mistakes, as seen 
by their lowest numbers of false positives and false negatives. SVM demonstrated consistent 
performance in both classes, as evidenced by a balanced confusion matrix with comparatively 
low rates of false positives and false negatives. Compared to SVM and Random Forests, 
Decision Trees reported greater counts of false positives and false negatives, indicating a higher 
rate of misclassifications.  

 These results show that Random Forests, with high values for accuracy, precision, recall, F1-
Score, and AUC-ROC, is the best approach for fault detection tasks on the CM1 dataset. SVM fared well 
as well, exhibiting competitive performance in terms of discriminating power and accuracy. Compared to 
SVM and Random Forests, Decision Trees performed marginally worse and had greater misclassification 
rates. All things considered, these observations offer insightful advice for choosing the best algorithm for 
software engineering defect detection jobs depending on particular performance needs and limits. 

Conclusion and Future Work  

 In summary, the use of supervised machine learning methods, such as Random Forests, 
Decision Trees, and Support Vector Machines (SVM), to improve the accuracy and dependability of fault 
detection in software engineering has been the focus of our study. We have examined the performance 
of these algorithms in identifying fault-prone and non-fault-prone modules through an empirical analysis 
on the CM1 dataset, and we have assessed their efficacy using a variety of assessment measures. Our 
results show that Random Forests achieve greater accuracy, precision, recall, F1-Score, and AUC-ROC 
values in fault detection tasks on the CM1 dataset compared to SVM and Decision Trees. Random 
forests show strong performance in reducing classification mistakes and differentiating between modules 
that are prone to faults and those that are not, which makes them a viable method for enhancing the 
precision and dependability of fault detection in software engineering. SVM likewise exhibits competitive 
performance; however, Decision Trees perform somewhat worse than SVM and Random Forests, with 
greater misclassification rates. All three approaches, however, provide insightful information on problem 
detection capabilities and suggest possible ways to address issues with software quality and 
dependability. Potential avenues for future research in the field of software engineering defect detection 
include investigating imbalanced data handling techniques, integrating feature engineering techniques, 
and exploring ensemble methods. We may push the boundaries of defect detection technology and aid in 
the creation of robust and dependable software systems across a range of industries by pursuing these 
future research topics. In the end, these developments will result in higher user happiness, better 
software quality, and less maintenance work in software engineering procedures. 
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