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ABSTRACT

This article uses Beddington and Holling type-Il functional response to explore a tritrophic food web
model system with prey-predator such as prey, midpredator, and top predator. This model’s positivity,
boundedness, local stability, and global stability were investigated. In addition, stability requirements are
derived using the Routh-Hurwitz criterion. Both theoretical and numerical discussions of Hop bifurcation
are included. Additionally, the Center Manifold Theorem has been used to establish the stability of non-
hyperbolic equilibrium sites. Additionally, Matlab ode45 software has been used for numerical analysis,
demonstrating the dynamic character of the model system.
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Introduction

In ecology, interactions between predators and prey occur at higher trophic levels and predators
can affect prey populations directly and indirectly [1, 2]. While the predator’s indirect influence involves
the prey population, which has the potential to alter prey behavior, the predator’s direct effect involves
predating the prey [3, 4, 5].Functional response is a major aspect of the ecological model system.
Functional responses that are used in many biological studies like Holling type I-1V, Ivlev, Crowly-Martin,
Beddinton-DeAngelis, etc. Holling type Il functional response is bounded and correct for biological
systems which conclude that Holling type Il functional response is more appropriate [6, 7, 8, 9, 10, 11].
Many researchers performed Holling type | functional response in higher order models [12, 13, 14, 15,
16]. For the higher order model Beddington—DeAngelis functional response is used. Many studies have
discussed bifurcation analysis of the prey-predator system providing for prey refuge, and the existence of
bifurcation (transcritical, Hopf). When one root is negative and the next is purely complex conjugate, this
type of equilibrium point is non-hyperbolic. The stability of equilibrium point Center manifold theorem has
been performed [17]. Group defense plays a major role in the dynamical system which plays an important
part in prey- predator model system. When prey species are in large numbers, they have defense ability
by creating herds, which shows decreased predation of the prey [18]. Some studies consider the impact
of toxins which are harmful to many aquatic organisms in marine systems [19]. It is evident that in the
process of algal blooms, algal aggregation plays a significant role. It has been found in past decades that
the prey-predator stability has been affected by toxic substance [20].Filter-feeding fish can reduce the
algal bloom population which affects the healthy development of the marine system. Filter-feeding fish is
widely applied in water bodies which is a direct method of manipulation to control cyanobacterial algal
blooms [21]. Some authors investigated the harvesting of prey and predators, when the density of the
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harvested population is large such harvesting increases to a limit value [22, 23]. Many authors have also
included alternative food sources in their research and the behavior of a system is significantly influenced
by substituting food sources for predators. When the density of favored prey is low, predators move to
other meals [24, 25, 26].In this study, we considered the ecological terms logistic growth rate,
consumption of prey by mid predator using Beddington function response, and consumption of
midpredator by the top predator using Holling type Il functional response. Beddington-DeAnglis function
response and Holling type Il functional response have not been used together. In this study, we
illustrated the local and global stability of model system. Then, we performed the bifurcation by using
constant c. Also, we found the stability using the Center Manifold theorem. Finally, theoretical results are
found with some numerical analysis.

The importance of this article is:

) To introduce three-dimensional food chain prey predator model by using Beddington-DeAnglis
functional response and Holling type Il functional response.
=  To check the stability and bifurcation of the system.
=  To know the concept of Center manifold theorem.
=  Toillustrate numerical analysis of the model system.

The article is given below: In part 2, model formulation of the non-spatial system has-been
given. In part 2.1, dynamical behavior is analyzed. It is shown that equilibrium points exist then stability
has been checked at each of the equilibrium points. Moreover, bifurcation of the model has been
performed. In part 3, numerical simulations have been given. Finally, in part 4, discussion and conclusion
has been given.

Motivation and Novelty

In our paper formulation of mathematical model based on three species food chain with prey
refuge have been studied using Beddington DeAnglis and Holling type Il functional responses. The
Beddington-DeAnglis and Holling type |l responses are especially helpful in modeling situations in which
predators become more effective at increasing prey densities and less effective at lower densities. To
improve the system's stability, the study combines these two functional responses together. This method
can result in more resilient and stable ecosystem dynamics and enables a more sophisticated portrayal
of predator-prey interactions. The attack rate of a generalist predator significantly influences the
mathematical modeling of predator-prey dynamics. The attack rate directly determines the form and
parameters of the functional response, which describes how the predator's consumption rate changes
with prey density. Higher attack rate, increases the predator's efficiency in capturing prey, leading to a
rapid decline in prey population. This can result in greater oscillations in population sizes and potentially
destabilize the system if the prey population drops too low. Lower attack rate, decreases the predator's
efficiency, allowing the prey population to grow, which might reduce oscillations and stabilize the system.
Predator prey models demonstrate inhibitory effects in population dynamics, since the presence of
predators slows the increase of prey populations. This interaction can keep the prey from growing too
much and stabilize the populations. Also, the Center Manifold Theorem is a powerful tool in dynamical
systems theory, particularly useful for analyzing the stability of non-hyperbolic equilibrium points. The
Center Manifold theorem facilitates the analysis of a system's stability by lowering its dimensionality in
the vicinity of a nonhyperbolic equilibrium point. Main target of this study is to introduce refuge ability and
prevented predation of the prey. This model is completely new as it integrates the Beddington-DeAngelis
functional response and the Holling type Il functional responses, which has not been previously
combined in ecological research.

The article is given below: In part 2 , model formulation of the non-spatial system has been
given. In part 3, some definitions related to work are given. In part 4, dynamical behavior is analyzed. It is
shown that equilibrium points exist then stability has been checked at each of the equilibrium points.
Moreover, Global stability, effect of attack rate of generalist predator on specialist predator, bifurcation of
the model, center manifold theorem have been performed. In part 5, numerical simulations have been
given. Finally, in part 6, discussion and conclusion has been given.

System Model Formulation

Here, we consider three-dimensional interaction model. To propose the model system the
assumptions are as below:
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. Prey density is shown by U, mid-predator density is shown by V, and top predator density is
shown by W.

The prey species becomes larger with growth rate A1.

K shows carrying capacity.

Prey and mid-predator succeed Bedding ton functional response.

Mid-predator and top predator succeed Holling type-Il functional response.

U
AL —)
B U - E;UW
N
D, W
E,UV | o
U+ AV + B
. 4
\V cvw
V+p
D,V
v
Fig. 1 Schematic diagram of model system
The model is expressed as below:

W_ 4 U<1 U) E, UV E,UW 1
ar ~ ! K/ U+AV+B 2 M
dV _ aEUV Dy C,Vw )
dT " U+AV+B % V4B @
W o - pw + 2 3
dar QazLp 2 V+B 3)

Subject to IC: U(0) > 0,V (0) > 0,W(0) > 0. Now, we reduce the parameters, for this purpose,

we putu = g, AT=t v= %, w = %. The system turns as:
du uv
E=u(1—u)—u+T+Bl—uw (4)
dv a;uv VW
a=u+cv+81_mzv_v+—b ®)
dw mgswv
T m3uw—m4w+v_|_—b (6)
u(0) > 0,v(0) > 0,w(0) > 0. Here, ¢ = %'51 =2,m, = E—i,b = E%,m = ';—j,ms = “;:1,m3 = a,K.

Dynamical Behavior
In this part, we will discuss positivity, boundedness, stability, and bifurcation of the system.
Table 1. Ecological Parameters are described as:
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Parameters Meaning
Ay Growth rate
E; mid predator's consumption rate on prey
A Inhibitory effect
K Carrying capacity
B Half saturation constant
E, predator's consumption rate on prey
04 Conversion of prey biomass into mid predator
D, mid predator's death rate
Cy Consumption rate of mid predator by top predator
B Predator interference parameter
a, Constant rate of prey biomass into top predator
D, top predator's death rate
Os Constant rate of mid predator biomass into
. Positivity

Populations in the system never go extinct because of the positives we discovered. For this
purpose, we integrate the equations by using ICs as below

t v
u(e) =u() (f [(1 "W, W] dS) %
0 1
v(©) = v(0) f L A @)
B o lutcv+ [31 3 v+b
_ t msVv
w(t) = w(0) ( fo [mau —m, + = b] ds) )

Hence, if the initial conditions are non-negative then the right side is positive.
. Boundedness

In this part, we prove the boundedness of the system. It indicates the system is conducted in an
appropriate manner.

Theorem 1: Solutions of the model system (1)-(3) is uniformly bounded in R3.

Proof: Let solution of the model (1)-(3) is (u(t), v(t), w(t)).

cqwW W Cim3

d frd f— —_——
then we have e u(l—u) +[

ms0y

Let us suppose a function w(u,v,w) =u+u1+
1

m451]

mg

ams’

1] uw — Gﬂ [mz +
Then we get 1> 0, in a way that i—f + ¢¢ < 1, which implies that: §(t) < ¢p(0)e% + %(1 —e¥) <
max (¢(0),%). Hence, the theorem is proved.

o Equilibrium points and stability
This analysis gives four equilibrium points (i) E; = (0,0,0) (i) E; = (1,0,0) (iii) E3 = (%,O,% )
3 3
(iv) Ey = (ly, ¥y, Wy)
. Stability analysis.
In this part, first, linearize the system to get the stability then find the Jacobian matrix.
Theorem 2: Eigen values of J(E;) is a saddle point.

1 0 0
Proof: Here E; = (0,0,0). Then, J(E,) is J(Ey) = [0 —m, 0]
0 0 —IMy

The eigenvalues of E; are 1, —m,, —m,. Then, E; is a saddle point.
Theorem 3: E, is LAS if

9
1+Bl < m,; and ms < my.
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Proof: J(E,) is as follows:

R 1
| 1+B, |
J(Ez) = 0y
0 - 0
1+, 2 J
0 0 ms3 — My
The eigen values of E, are —1, 1:3 —m, and m; — m,. Therefore, E, is LAS if 1:3 <m, and
1 1
ms < my
2 2
oy (S 3+t _ oy (38R
Theorem 4: J(Es) is LAS if m, > E;“% ;)—Cl(‘“S M) and saddle point if m, <%—
(m_§+61) msb (m_:+B1)
¢1(mz—my)
mzb
Proof: E; = (% 0, m:m‘*), exists. Thus, the characteristic roots J(E;) is as given:
3 3
2
[o51 ﬂ"’ﬁ% _
% —m, — %,Az and A; Here, A, and A; are characteristic roots of the equation A* + %A +
_4+Bl 3 3
m3
2 2
51 ﬂ"'ﬁ% _ (<61 m"’ﬁ%
D (my —m,) = 0. Hence, J(E,) is LAS if m, > (& ;) — ama=ms) hg saddle point if mz(“‘é—;) -
ms my m3b mg
(m3+Bl) (m3+81)
¢1(mz—m,)
msb
Theorem 5: E, is LAS, if conditions satisfy (i) A,B and C > 0, (ii) AB > C.
Proof: Now, for the equilibrium point E, = (@, ¥, W), exists. Thus J(E,) is as following:
Yi1. Y12 Y13
J(Ey) = Y21 Y22 V23
Y31 Y32 VY33
T O i A A (1) R _ au(v+B,9)
where, yin=1-20 (ﬁ+c‘,’+B1)z W,¥12 = (ﬁ+c‘7+Bl)Z'Y13 =0,yy1 = (ﬁ+c‘7+51)z,
_ [oa(0?+p,a) _ bow _ o _ - _ bmgw e ms¢
Y22 = —(ﬁ+cv+Bl)2 m; (7+b)? 1 Y23 = _(‘.,+b),)’31 = M3W, Y3z = @+b)? Y33 = mzgu —my + +b)’
The characteristic equation is as showing:
N +AN +BA+C=0 (10)

where, A = —(y11 + V22 + V33)

B =y11¥22 — V12¥21 — Y2332
C = y11(Y22Y33 — Y23Y32) — Y12Y21Y33
Hence, E, is LAS, as following conditions hold: (i) A,B and C > 0 (ii) AB > C.
Global Stability Analysis
Theorem 6: If we consider that
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B cv? + B, ¥ B
1—2u—ﬁ—w>0 (11)
(8 +cv+ Bl)
Gl(ﬁz + Blﬁ) _ _ bC1\7v
@+cvep) 2 @b .
m3ﬁ—m4+%>0 (13)
52 & ~2 ~ ~ (2 ~
R AT
(u+cv+|31) (u+cv+Bl) (u+cv+[31)
a, (02 + B, @) be, W 3 ms¥ -,V
vy G M G Gy )

then E, = (4, ¥, W) is GAS.
Proof: Characterize a Lyapunov function

a \% w
V= (ﬁ—ﬁ* — 0" —0'ln E)+(\7—\7*—\7*—\7*1n F>+(v"v—v~v*—v~v* —W*ln F)
Taking we differentiate w.r.t. t along the system solution, we get
av ~ ~ ok ~ o~k ~ ~ % ~ ~ ok & ok &~ ok ~. o~k
P =11 (0 = 0*)% = (P — P*)? = c33(W — W2 + 1o (0 — W) (T = V) + 30 — V(W — W).
cv2+B, ¥ - _ —(a%+B,0)

Where, Ci1 = 1-20- W —W,Cip = (1"1+C\"/+[31)2 ,C13 = 0
o, (V2 + B,¥) a, (02 + B, @) be; W -, ¥ 3 bmgWw
Co1r = 7 Cn= |77 M —— »C23 = 7= » Y31 = M3W, C33 = —=——-,C33
(i+cv+B,) (i+cv+B,)° (7 +b)? (¥ +b) (¥ +b)?
- ms¥
=m3u—m4+(‘7+b)
if the following inequalities hold:
C11 > 0, Co2 > 0, C33 > 0, (16)
cf, < C11C22 a7
c33 < C22C33 (18)

It is easy to see that all the conditions are satisfied. Biologically, the boundedness and stability
of a system show that the model system is well mannered. Furthermore, it implies that no species grows
exponentially for a long period.

Hopf-bifurcation of Non-spatial System

Here, we have established a theorem that clarifies Hopf bifurcation, where ¢ stands for the
bifurcation parameter.

Theorem 7: Hopf-bifurcation occurs in model system (1)-(3), When c, crosses a threshold value
¢, near E, = (ii,7,W) if conditions hold as: A(c) > 0,C(c) > 0,A(c)B(c) — ¢(c)) = 0 and [A(c)B(c)] =
c'(c).

Proof: It is easy to see that E, is LAS. If threshold value c’ exist s.t.

A()B(c)—c(c)=0
For ¢ = ¢ the characteristic equation is as:

(R()+B(c)) (M) +A(c)) =0

Roots are: —A(c"),1/B(c) and —1/B(c). If transversality condition

Hopf-bifurcation occurs at ¢ = c'. roots are

A(©) = p() +1v(0),
Az(€) = p(©) +v(o),

ReAB)I % 0 hold, then
=C

c=
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A3(c) = —A(0).

Substituting into we get

QO '(©) = L)V (&) + M(c) = 0,

L(©)u(c) + Q(c)v (c) + N(c) = 0,

Where,

Q(c) = 3u?(c) + 2A(c)u(c) + B(c) — 3v2(c)
L(c) = 6u(c)v(c) + 2Av(c)

M(c) = H?(0)A(€) + cp(c) + C'(c) = A(c)v?(c)
N(c) = 2u(c)V(c)A'(c) + B'(c)v(c).

Here, u(c) = 0,v(c) = B(c), we get

Q(c) = —2B(c"),L(c) = 2A(c)v/B(c), M(c") = €'(c) — A(c)B(c),N(c) = B'(c)v/B(c).

Solving p'(c), we get:

. N(S)+Q(IM(C c(c)-(a()B(c) Nl Y L i
W@ = _u )QNZ((C,);QLE (23“( )_1 AZ((C,)+B(C,) ) 2o i (A()B(c)) # () and

As(c) = —A(c’) < 0. Hence the theorem is proved.

Re(Aj(0)
dc

Center Manifold Theorem

Center Manifold theorem is applied to check stability if one or more roots are zero and next one
is negative real part.Now we shift E(u;, v;, w;) at the origin and get the transformationu =u+u;,v=v+
V1, W = w + w; in the system (4)-(6) and we get

du

priab Sl + X1V + X13W + X1,U% + X15UV + X16VZ 4 X17VW + X1gW2 + X;quW

dv 2 2 2

1T = X21U + Xp2V + Xp3W + Xp4U” + Xp5UV + X6V + Xp7VW + XpgW* + XpgUW

dw 2 2 2

E = X31U + X35V + X33W + X34,U° + X35UV + X35V” + X37VW + X3gW* + X39UW

Here, the coefficients x;; are given in Appendix A. System turns as:

Stability and bifurcation study of the predator-prey model using the Beddington-deAngelis
functional respons

u X11 X12  X13
v|=1%X21 X22 X23
W. X31

X32 X33

V[ + %3402 + Xp5uv + X, uw

[u] X14U% + X5uv + Xy quwW
w X37VW + X39UW

Theorem 8: Eigen values of J(E;) is a saddle point. Proof: For E; the above system reduce to,

-1
u -1 1+B, -1 u X14U% + Xq5UV + X{oUW
[V] = o Qg —m, [V] + [x24u% + X5uv + Xpyuw
W 1+8, A X37VW + X30UW
0 0 mg—my
E.V. is given as —1,—~— —m, and m; — m,. If we consider —— = m, then the equilibrium point E, (1,0,0)

1+B, 1+,
is non-hyperbolic type.

Now we use the transformation

u X 1 —q12 1
[v] = R[y], where R = |0 1 0]
w Z 0 0 qs3

Then the system turns as,

X -1 0 07 x Hy
y] =I 0 0 0 [y] + [H,
VA 0 0 m3—myllz H;
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We can see H; in Appendix B. Now W°¢(0) = (x,y,2)eR3:x = g,(y),z = g2(y),g:(0) = 0,8,(0) =
0,Dg,(0) = 0,Dg,(0) = 0, To calculate W¢(0), let us consider x = g;(y) = cq1y% + 12y + O(|ly||}),z =
g2(Y) = C21y?% + c2,7° + O([lyl|Y). Now we find ¢;; = 0,¢;5 = Ny3,¢p1 = 0,cp, = 0. Thus, manifold is shown
by y = N,,y? + N,;Ny3y%, it is a saddle point. Hence proved.

Theorem 9: At E,, the periodic solution will be stable and unstable if A<0 and A>0
respectively.

Proof: If Hopf bifurcation exists in the system, it implies that characteristic equations have purely

complex conjugates and one negative real root. The roots are given as —A;,i /A, —iy/A,. It is non-
hyperbolic type roots.

u X
Therefore:[v] =A [y]
W- Z

811 812 813

Where, [321 822 gzz] ,gij is given in Appendix C.
831 832 833

The system becomes:

% 0 —J/A, 0] x €1

Y] =|./A, 0 0 Y] + (€2

Z €3

0 0 —A|Z
We can see Appendix D to check the values of e;, e, and e;. Characteristic equations have
purely complex conjugate and one negative real root. Therefore, we are unable to find stability, so the
Center manifold is given as:
We(0) = (x,7,2)eR3:z = g(x,y), |x| < 84, |y| < 8,,8(0,0) = 0,Dg(0,0) = 0. To calculate the center manifold
theorem, we consider z=g(xy) =a;x?+a,y?+azxy+ 0(||x||®), Here we find a; = Ai(A31 -
1

1 A1AzAz4-2,A3(A52A1-Az,Ay)
as/A,),a, = — (A3, —az/Ay)and az = .
3 2)' 2 Az( 32 vz 3 (2A;+2A,+AD)A,

Thus, by using the center manifold:

[x] B [ 0 —\/A_z] [x] N [fl]

i lya oW

Where fl(X, y) = A11X2 + A12y2 + A14Xy + A1631X3 + A1532y3 +
(Agsa; + A16az)x’y + (Agsaz + Ageaz)y>x + O(|[X|*), f2 = Agix? + Agoy? + AgyXy + Agear X° +
Azsazy® + Agsapy® + (Azsay + Azeaz)x?y + (Azsaz + Azear)y®x + O(IXI%).

Now, we calculate the First Lyapunov exponent A at (0,0,0), to show stability or instability of E,.

/\—1(f +f +f + faryyy)) + ! [f10x9) (B + Fryyy) — 2y (P Hagry))]
T 16 1000 T ROy T 20000 T R20yy)) T o \/A_z 1\ T yy) 2y \N2(xx) TR2(yy)

. ~ fico e + figm 2oy
=16 [6Aiga; + 2(Agsaz + Ajgay) + 2(Azsa; + Azsaz) + 6A55as]

1
+ To/n ™ [2A14(A11 + A1z) —2A24(Az; + Ayp) — 4A11A51 + 4A15A5]
Hence theorem is proved.
Numerical Simulation
Here, we will perform numerical analysis supporting the analytical findings. We used ode 45
solver in MATLAB by taking the parameter values as: B, =.1, ¢ = 0.65,0; = .35, m, =.25,¢; =3.15,b =
0.5,m; =.01,m, =.5,m; = 4.93. First, we see the outcome of constant c as shown in Figs. 2-6. The
diagrams indicate that the system become unstable at c = 0.4, as we increase the value of c it tends to

Hopf bifurcation at the critical value ¢’ = 0.37, to better understand, at different values of ¢, we observe
some of time series and phase portrait diagrams.
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Discussions and Conclusions

This work investigates the dynamical nature of system by using Beddington-DeAngelis and
Holling type-Il functional response to inspect the interaction between prey and predators. It shows a
major role to preserve the dynamical system balance. A schematic illustration is provided in Fig. 1 to help
visualize the model formulation. The proposed system is investigated using differential equation theory
and several dynamical techniques like boundedness, local stability, global stability, and bifurcation. Then,
we demonstrated that the solutions are uniformly bounded. We determined equilibrium points and
examined their stability. We found a Hopf bifurcation see in Fig. 2-6 with parameter c. As the value of ¢
become larger system become unstable. For advancement, we have given the numerical solutions using
MATLAB to validate analytical results for temporal model system.
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T —
Figure 4: Existence of Hopf bifurcation ¢ = 0.34
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Appendices

Appendix A
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Appendix B

The values of H; is as follows:

Hi = x2 + Nyyxy + MqoXZ + My3y2 + Myayz + My522, Hy = Myyxy + Moov2 + Mosyz, Hy = M3yxz +
Maoyz + Ma3z2.

Appendix C

2
Here, 941 = —A2,95, = 0,045 = AT — X23X32, Gp1 = X31X23,Jpy = —X214/ A2, Jpg = X31X23 —

X21A1,d3, = 0,95, = —X31y/A2, 0,53 = X21X32 — X31A.

Appendix D

e = D11X2 + D12y2 + D13Z2 + D14Xy + D15yZ + D162X
€y = D21X2 + D22y2 + D23Z2 + D24Xy + D25yZ + D262X
€3 = D31X2 + D32y2 + D33Z2 + D34Xy + D35yZ + D362X
with, Dyq = C119%, + A129,,9,1,

Dz = C14922932!

D13 = C11g$3 + C12g13gz3 + C13913g33 + C14923g33’
D1y = C12911922 + C13g11g32 + C14gg1g32

D15 = C11g13922 + C13g13932 + C14922933 + C14gz3g32|
D16 = 2011911913 + C12911gg3 + C12g13gz1 + C13911933 + C14921g33
The similar expression for Dy and Ds; will be obtained only replacing Cq; by Cy and Cjy
respectively.
C11 = t11Xq4 + ty2X24
Ci2 = t1X15 + t12Xos
Ci3 = ty1X19 + t13X39
C1a = t12Xo7 + t13X39
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Co1 = ty1Xq4 + toXo4
Cop = ty1Xq5 + tooXos
Ca3 = ty1Xqg + tr3Xag
Co4 = tyoXo7 + tr3Xag
Ca1 = t11Xq4 + t1oX24
Cap = t31X15 + t3pX5
Caz = t31Xqg + t33Xag
Cag = t3oXo7 + t33Xag

Where,

Stability and bifurcation study of the predator-prey model using the Beddington-deAngelis

functional response
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