
International Journal of Innovations & Research Analysis (IJIRA) 136
ISSN :2583-0295, Impact Factor: 5.449, Volume 03, No. 04(II), October- December, 2023, pp 136-142

SOFTWARE-RELATED PRODUCT HARM CRISIS: ANALYZING CODING
SCHEMES TO DEVELOP MANAGEMENT FRAMEWORK (SR-PHC-MF)

 Manoj Kumar Rana

Dr. Shalini Devi**

ABSTRACT

Product harm crisis (PHC) involves cross section of multiple disciplines. It is a critical event for any
business as it directly impacts end-consumers’ safety. Social media and online consumer platforms help to
amplify the message. If not handled well, this has potential to negatively impact the brand reputation and
financial viability of the firm which is in middle of such crisis. Understanding the role of software in causing
and then managing the impact of such crisis is not much studied. Software solutions are critical components
of product development across various stages including conceptualization, design and development,
testing, distribution and after sales support. Software based solutions are also used by support teams to
assess customer and channelize communications in case of Product harm crisis event. This paper covers
the Software-Related PHC events and suggests a framework to handle those. The trend of increased
utilization of software in product development process and increasing complexity of software systems
including opaqueness caused due to software components modularity, artificial intelligence and machine
learning algorithms.

Keywords: Software Related, Product Harm Crisis, Software Related Product Harm Crisis Management
Framework, Software Failures.

Introduction

Heath, R. L., & Palenchar, M. J. (2000), “A product harm crisis refers to a situation where a
product, whether due to design flaws, manufacturing defects, or other issues, causes harm to
consumers, leading to a significant negative impact on the reputation and financial stability of the
company responsible for the product.”. A company may face safety concerns, product defects or other
miscellaneous issues related to product. These issues have potential to harm consumers with varied
intensity. Handling PHC requires effective utilization of mix of communication, correction, and reputation
management. Various studies are done in past across different domains like Automobile, Telecom,
Healthcare, CPG, FMCG products etc., highlighting the impact of Product Harm Crisis situations on
specific brands (Backhaus M. & Fischer, M. 2016) as well as entire industry (Birsch D. & Fielder John H.
1994).

Nowadays, software is providing major functionalities across stages of product
conceptualization, design and development, distribution and after sales support for all these domains.
Often, the software has a huge contribution in meeting safety requirements of the product, this implies
that failure or malfunction might result into, or add to, a fatal accident. Even though software engineering

 AGM, HCL Technologies, Noida, UP, India.
** Associate Professor, Keshav Mahavidyalaya, University of Delhi, Delhi, India.

Manoj Kumar Rana & Dr. Shalini Devi: Software-Related Product HARM Crisis: Analyzing..... 137

practices and tools-chain have matured consistently, still software are prone to defects due to various
factors including missed requirements, programming defects, test insufficiency etc, (Santos et. al. 2021).
The involvement of latest trends including Cloud Computing, Machine Learning and Artificial intelligence
enables a whole new set of opportunities and capabilities to software, not available earlier. However,
these also introduces new set of defects which are not only difficult to fix due to black box nature of
underlying algorithms but also difficult to notice for situations including in-built bias (Barocas et. al. 2016),
or subtle data shifts (Chehreghani et.al. 2007) etc., until it is too late. Such conditions make product
predict wrong outcomes and thus has potential to cause harm for basing decisions on these wrong
predictions.

This paper evaluates Software Related product harm crisis situations and provide a framework
to address these challenges.

Literature Review

Different definitions are provided for the term ‘Product harm crisis’ across literature. The
definitions vary based on situation, application, domain etc.

Heath R. L., & Palenchar M. J. (2000) defines it as “A product harm crisis refers to a situation
where a product, whether due to design flaws, manufacturing defects, or other issues, causes harm to
consumers, leading to a significant negative impact on the reputation and financial stability of the
company responsible for the product.”.

 Product harm crisis is also defined as “well publicized instances of defective or dangerous
products” (Dawar & Pillutla 2000). For the purpose of this research, we have expanded this definition to
also include potential for a severe financial or reputation loss due to software functionality loss or data
leakage to the consumers. Some of the pertinent examples are Mattel’s toys recall in 2007 (Teagarden,
2009), Toyota’s automobile recall in 2009 after a car crash (Andrews et. al. 2011), Boeing 737 MAX fatal
crashes due to MCAS software issue (Dominici G. & Lisi D. 2020), Heartbleed bug in OpenSSL
cryptographic library (Durumeric, Z. et al. 2014). and Equifax data breach due to Apache Struts
vulnerability (Lee W. 2019). Defective products may harm end users, companies, and even entire
society. Product harm crisis also impact the company brand value as end-users consumes negative
information, builds negative attitudes toward the brand, company, and sometimes entire industry
(Siomkos & Kurzbard 1994). During the PHC process companies incur the additional cost, enhance their
current operations, and attempts to rebuild the reputation in long-run. Hence it is critical for stakeholders
involved, including but not limited to company management and supply chain involved, to understand
product harm crisis in details including underlying causes.

 Software plays an increasingly important role in different stages of managing product harm
crisis. Software defects, vulnerabilities, or malfunctions can contribute to product failures and harm.
(Boehm B. W. 1987). The design and quality of software play a crucial role in preventing product harm.
Communication is critical to handle a product harm crisis situation. Software tools facilitate effective
communication internally and externally, aiding in crisis management. (Coombs W. T. 2014). Supply
chain management software traces and identifies affected products and thus respond quickly to product
harm incidents. (Chopra S. & Meindl P. 2007).

Further, software tools help companies in maintaining regulatory compliance, reducing any
adverse legal impact during a product harm crisis situation.

 The Software industry is very dynamic due to fast paced innovations happening around
concepts, frameworks, tools, applications, and other capabilities. Software usage has increased
applications due to explosive growth of data, cheaper storage, faster network and cost-effective
infrastructure rentals in form of cloud computing. Software practitioners make lots of crucial decisions
during different stages of software development lifecycle including software conceptualization, design
and development, implementation, and post deployment stages. These decisions are made at different
organizational levels. Decisions vary from requirements clarifications, implementation decisions during
development, project management gating criteria, release management, portfolio management etc.
Some of these software decisions at various organizational levels could be unsuccessful, leading to
failure conditions and corresponding upstream negative impact.

 Santos et. al. (2021), analyzed software failure causes including their type, programmatic
context, layer, and source-code where these manifested. They observed that 84% software failure
causes were categorized into memory addressing issues, responsiveness, and inadequate exception
handling. Irrespective of the failed-code type, the major failure causes were related to programming.

138 International Journal of Innovations & Research Analysis (IJIRA)- October - December, 2023

These programming related failures are remain mostly hidden once these passes gating criteria of go/no-
go decision at deployment stage, and later manifests into product harm situations depending upon
severity levels.

 Simone L. (2013) found that in the analysis of recalls reported from 2005 through 2011, 19.4%
of medical device recalls were related to software. The recalls related to software were approximately
6% in 1980s. The increase is attributed to combination of various factors including increase in software
complexity, increased coverage of business workflows using software, more products utilizing software,
increased products’ ‘softwarization’. Understanding about how software-related problems can result in
recalls provides businesses an opportunity to incorporate this information into their design and
manufacturing and other business workflows to produce safer alternatives.

 Simone L. (2013) explored the multiple terms that are used in literature to imply the role that
software plays in recall process and thus potential product harm crisis situations. These terms include
Software faults, Software Error, Software problem, software failure and Software related. As there is
inconsistency of usage of these terms, he divided these recalls into two mutually exclusive categories –
Software related recalls and recalls not related to Software. Software related recalls include a spectrum
of reported problems such as when software is a contributing factor in crisis, when it is part of a poorly
defined system level risk control measure, or when new software is released as part of corrective or
preventive action for non-software error. Table 1 summarizes sub distinctions for the term ‘Software
Related’:

Table 1: Sub distinctions for term ‘Software-Related’

Term Explanation

Software-related and due to a
software error

If the cause is attributed to software error or includes a software
error

Software-related If the causal analysis results into causes not due to software error
but somehow software is involved.
Or if the cause is not known but software is somehow involved.

Objectives of the Study

The current study aims to understand the role of software in product harm crisis situations. As
nowadays software has ubiquitous presence in end-to-end product development, the study aims to
understand software related product harm crisis situation. It aims to understand the common causes of
those software failures. Based on this information, the study develops a framework to handle software
related product harm crisis situations.

Research Problem

Typical PHC research is typically mapped to one of the 3 phases pre-recall, during a product
recall and post-recall period. Considerable time is lost between recall decision, actual product recall and
moment the product is considered suitable for use again (Van Heerde, 2007).

The current research focuses on understanding the causes, impacts and mitigation strategies
for software-related product harm crisis. The study utilizes the characteristics of software development
processes, lifecycle, tools and technologies to enable that. This research attempts to answer the
following research questions:

• What are the primary causes of software-induced product harm crises across different
industries?

• What mitigation strategies can be implemented to prevent and handle software related product
harm crisis?

It spans across all three phases as describes above.

Research Methodology

The current research utilizes case studies based qualitative research method for in-depth
exploration. It is based on secondary sources from academic literature, industry reports and case studies
published for software related product harm crisis. Case studies are selected from different industries for
the products where software defines the core functionality or assisted functionality to cause severe
damage in case of failures. It utilizes qualitative research method such as Content Analysis to
systematically study the content of mainly textual information. There are 7 coding schemes used to
capture the key themes in the content.

Manoj Kumar Rana & Dr. Shalini Devi: Software-Related Product HARM Crisis: Analyzing..... 139

Research Design and Approach

The current research utilizes mix-methods research design. This approach enables detailed
exploration of software related product harm crisis. The Content Analysis research method uses 7
coding schemes:

• Interface inconsistencies

• Usage and Context

• Algorithmic Errors

• Error Detection and Recovery Mechanism

• Data Drift

• Maintenance and Upgrade

• Unforeseen Events

The following case studies are also utilized for this exploration:

• Boeing 737 MAX fatal crashes due to MCAS software issue

• Equifax data breach due to Apache Struts vulnerability

Research Findings

For Research Questions

Research questions Q1 and Q2 are studied with the help of available research literature,
software industry trends and best practices from software product development fields. Further
applicability of these findings were applied to both of the identified cases studies.

 Research Question, Q1: What are the primary causes of software-related product harm crises
across different industries?

Based on the Content Analysis, the repeatedly occurring themes are tabulated. The Table 2
below, provides a summary of problems themes resulting into software related failures.

Table 2: Common Problem Themes Causing Software related Failures

 Coding Schemes Identified Themes

1 Interface
inconsistencies

Incorrect / mixed / missing data, Database access issues, data refresh
issues, device / module interfaces and communications

2 Usage and Context Missed / incomplete / incorrect workflows or state of operations

3 Algorithms errors Incorrect or inadequate calculations, longer delays leading to timeout,
insufficient or wrong domain assumptions, Biases specially for Machine

learning and AI implementations

4 Error Detection and
Recovery Mechanism

Inadequate or missing error detection and recovery implementations,
lack of mitigations for non-software related vulnerabilities.

5 Data Drift Change in user interaction with product, deployment environment,
additional interfaces

6 Maintenance and
Upgrade

Installation of incorrect software version, configuration data or
calibration data. Insufficient software installation or upgradation
procedures, loaded / installed software does not run

7 Unforseen events Hacking, cybersecurity breaches, critical service outages

 Research Question, Q2: What mitigation strategies can be implemented to prevent and handle
software related product harm crisis?

 To mitigate software related product harm crisis, Software Related Product Harm Crisis
Management Framework (SR-PHC-MF) is created. The framework amalgamates the best practices from
Software practice with product harm crisis stages. This enables robust software offering component,
preventive care and early detection of issues, and quick response to product harm crisis events to
minimize negative impact on product, brand, company and industry. By responding in a transparent
manner with required alacrity both reputation and monetary losses can be contained. Table 3
summarizes the Software Related Product Harm Crisis Management Framework (SR-PHC-MF).

140 International Journal of Innovations & Research Analysis (IJIRA)- October - December, 2023

Table 3: Software Related Product Harm Crisis Management Framework (SR-PHC-MF)

 Practices Description

B
id

ir
e
c
ti

o
n

a
l

T
ra

c
e
a
b

il
it

y
 t

h
ro

u
g

h
 C

o
n

n
e
c
te

d
 T

o
o

li
n

g

In
d

u
s
tr

y
 B

e
s
t

P
ra

c
ti

c
e
s
 s

u
p

p
o

rt
e
d

 b
y
 s

ta
n

d
a
rd

iz
e
d

 A
rt

e
fa

c
ts

 a
n

d
 T

e
m

p
la

te
s

D
a
ta

 D
ri

v
e
n

 R
o

b
u

s
t

G
o

v
e
rn

a
n

c
e
 p

ro
m

o
ti

n
g

 T
ra

n
s

p
a
re

n
c
y

Preventive Measures

Robust
Development
Practices

Application of industry recognized best practices and coding
standards

Through Test and
Quality Assurance
Planning

Identification of rigorous testing methodologies, exit criteria,
adoption of tool-based automation for sanity and quick
regression.

Adoption of Secure
Development
Lifecycle

Adoption of security practices throughout development lifecycle,
including Risk assessment for requirements, threat modeling and
Design review, Static analysis, Security Testing and code review,
Security assessment and secure configuration, and monitoring
and real-time handling for security events. Adoption of
DevSecOps, which is a security-conscious adoption of DevOps.

Legal and Compliance Adherence

Legal
Preparedness by
Design

Early sign-off of legal compliance requirements by legal experts,
review of legal compliance controls at each exit phase, inclusion
of cross geographies legal experts during product acceptance
testing. Plan to acquire conformance certificates for geographies
of operations.

Data Protection
Mechanism

Adherence to data compliance requirements specific to
geographies of operations particularly ensure industry best
practices for Personal Identification Information (PII), data in
motion and data at rest. Stronger encryption levels are highly
recommended.

Rapid Response and Resolution

Incident Response
Team

Identify roles, names, key contact information, Tools and
Standard Operating Procedures (SOP) along with SLAs,
thresholds, and escalation mechanism. Include participation
across departments and roles. Create backup of critical roles.

Agile Recovery
Strategies

Conduct frequent pivots around approaches based on response
data received from end users. Create customizable templates,
document explicit success criteria as part of selected product
harm crisis handling approach. Utilize common dashboard for
status reporting with no or minimal manual intervention.

Early Detection and Monitoring

Continuous
Monitoring

Implement monitoring tools with thresholds actions configured.
These should be done for both leading and lagging measures.

User Feedback
Mechanism

User feedback, from different channels, are fed into common
dashboard. Proactive monitoring probes are implemented which
proactively tracks change in users’ sentiments across channels.
In case of a structured feedback, ensure users are educated to
avoid false alarms.

Effective Communication and Transparency

Crisis
Communication
Plan

Create clear communication protocols including chain of
command and escalation process. Establish communication
channels for both internal and external stakeholders. Prepare
pre-approved templates and key messages for different crisis
situations. Have a robust media relations plan in place. Identify
key stakeholders, including customers, suppliers, and community
members.
Develop targeted communication strategies for each stakeholder
group.

Users
Communication
Channels

Monitor all user communication channels including customer
portal, user feedback platforms, product forums etc. Users
should be communicated back minimally through the same
channel. In case of multi-homing, deployed software tools should
be able to provide consolidated and consistent view across all
such channels.

Manoj Kumar Rana & Dr. Shalini Devi: Software-Related Product HARM Crisis: Analyzing..... 141

Post Incident Analysis and Learnings

Root Cause
Analysis (RCA)

Tools like fish-bone analysis, 5-Whys etc. to be used to
understand root cause of Product Harm Crisis event. RCA helps
to fine-tune the current crisis response or predict / avoid / delay
future Product Harm Crisis events.

Continuous
Improvements

Document the context of Product Harm Crisis event, root cause,
impact, and learnings. Share it with stakeholders. These must be
part of Organization wide Knowledge Management in searchable
form.

Application of Research Findings to Case Studies

• Case Study 1: Boeing 737 MAX fatal crashes due to MCAS software issue

 Case Details: Two crashes related to Boeing 737 MAX aircrafts happened within 6 months
period. The Lion Air Flight 610 crashed in Indonesia on 29th October 2018, while Ethiopian Airlines flight
302 crashed on 10th March 2019. All passengers and crew members lost their lives in both these cases.

 Key Findings: Both these crashes were found to be linked to Maneuvering Characteristics
Augmentation System (MCAS). MCAS is a flight control software system responsible to automatically
adjust the horizontal stabilizer trim to prevent a stall. This system relies on the data from a single Angle of
Attack (AoA) sensor. This sensor measures the angle between the aircraft nose and oncoming air.

 Following issues were held responsible for these crashes:

▪ Overreliance on a single sensor: If this sensor is faulty then MCAS could push aircraft’s
nose down.

▪ Multiple nose-down commands in short period of time: If MCAS read high AoA, then it
issued multiple nose-down commands in short period of time, Pilot could not act so fast to
counteract.

▪ Pilot Awareness: MCAS was not covered in flight manuals, not specific training was
provided to pilots in this case for this feature.

Applicable Coding Schemes from Findings

Interface inconsistencies, Usage and Context, Error Detection, and recovery mechanism.

• Case Study 2: Equifax data breach due to Apache Struts vulnerability

Case Details: Equifax is one of the major credit reporting agencies. The data breach impacted
nearly 147 million people. The sensitive financial and personal information including names, SSN
numbers, birth dates, addresses, driver’s license numbers etc. were compromised.

Following issues were held responsible for this data breach and loss of financial and personal
information:

▪ Equifax used Apache Struts which is an open-source framework for developing Java based
web applications. This version of Apache Struts had a vulnerability identified by tag ‘Apache
Struts CVE-2017-5638’. Attackers exploited this vulnerability to execute arbitrary
commands on the web servers of Equifax. Though the breach took place in May 2017,
Equifax could not discover it until July 2017.

▪ Equifax was aware of the Apache Struts vulnerability and had been notified about the
available patch by Apache Software Foundation. But it did not apply this security patch
which was marked necessary.

 Applicable Coding Schemes from findings: Usage and Context, Maintenance and Upgrade,
Unforeseen Events

Discussion and Conclusion

 The current research provides valuable insights into challenges faced with software related
product harm crisis situations. It expands the Product Harm Crisis to include damages beyond physical
harm. It enables study of contemporary issues like data loss/leakages, cyber-attacks, Machine learning
and artificial intelligence specific challenges like biases and data drifts etc. The explored causes are
tabulated, and SR-PHC-MF provides actionable recommendations for industries, policymakers and
software developers to enhance reliability and safety of such software products to identify current product
harm conditions. and avoid possible future occurrences.

142 International Journal of Innovations & Research Analysis (IJIRA)- October - December, 2023

Recommendations and Scope for Further Research

Current study expanded the definition of Product Harm Crisis to take care of contemporary
issues which directly don’t cause physical harm but exposes consumers to life changing scenarios.
Future research may expand to cover more cases studies from more industries. They may also evaluate
if attribution for harm is significantly changed based on consumer knowledge of software cause for the
harm. More dedicated studies may also be conducted on specific problems for the impact of
contemporary issues like data drift or algorithmic biasness.

Références

1. Heath, R. L., & Palenchar, M. J. (2000). The importance of interpersonal communication in
crises. In R. L. Heath & M. J. Palenchar (Eds.), Crisis communications: Lessons from
September 11 (pp. 185-194). Rowman & Littlefield.

2. Sharma, C. (2022). Tragedy of the Digital Commons. North Carolina Law Review, Forthcoming.

3. Mitroff, I. I., Pauchant, T. C., & Shrivastava, P. (1987). Conceptualizing and measuring crisis-
induced stress. Journal of Behavioral Medicine, 10(3), 235-266.

4. Barocas, S., & Selbst, A. D. (2016). Big Data's Disparate Impact. California Law Review, 104,
671. Available at SSRN or http://dx.doi.org/10.2139/ssrn.2477899

5. Boehm, B. W. (1987). Improving Software Productivity. ACM Computing Surveys (CSUR),
19(3), 189–204.

6. Birsch, D., & Fielder, J. H. (1994). The Ford Pinto Case: A Study in Applied Ethics, Business,
and Technology. State University of New York Press. ISBN: 978-0791422347

7. Chehreghani, M. H., Rahgozar, M., Lucas, C., & Chehreghani, M. H. (2007). A heuristic
algorithm for clustering rooted ordered trees. Intelligent Data Analysis, 11(4), 355–376.
doi:10.3233/ida-2007-11404

8. Chopra, S., & Meindl, P. (2007). Supply Chain Management: Strategy, Planning, and Operation.
Pearson.

9. Coombs, W. T. (2014). Ongoing Crisis Communication: Planning, Managing, and Responding.
Sage Publications.

10. Dominici, G., & Lisi, D. (2020). The Boeing 737 MAX and the Crisis of the Aviation Duopoly.
Journal of Strategic Marketing, 1-12.

11. Durumeric, Z., et al. (2014). The Matter of Heartbleed. Proceedings of the 2014 Conference on
Internet Measurement Conference, 475-488.

12. Indonesian National Transportation Safety Committee (KNKT). (2019). Final Report: Lion Air
Flight 610.

13. Ethiopian Aircraft Accident Investigation Bureau (AIB). (2020). Final Report: Ethiopian Airlines
Flight 302.

14. Lee, W. (2019). Equifax Data Breach: An Overview. Journal of Information Privacy and Security,
15(1), 56-66.

15. National Transportation Safety Board (NTSB). (2019). Boeing 737 MAX: Overview of the Lion
Air Flight 610 Accident.

16. National Transportation Safety Board (NTSB). (2019). Boeing 737 MAX: Overview of the
Ethiopian Airlines Flight 302 Accident.

17. U.S. House Committee on Transportation and Infrastructure, Majority Staff. (2020). Boeing 737
MAX: Ensuring the Safety of the Commercial Aviation Fleet.

18. Equifax. (2017). Equifax Announces Cybersecurity Incident Involving Consumer Information.

19. Federal Trade Commission (FTC). (n.d.). The Equifax Data Breach: What to Do.

20. U.S. House of Representatives, Committee on Oversight and Government Reform. (2018).
Report on the Equifax Data Breach.

21. Chopra, S., & Meindl, P. (2007). Supply Chain Management: Strategy, Planning, and Operation.

Pearson.

