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ABSTRACT 
 

Finding bugs in software development is essential to guaranteeing the creation of high-caliber 
software. Using machine learning approaches has yielded encouraging results in automating defect 
identification. Since early problem detection reduces the time and cost required for bug patching and 
maintenance, it is essential for software development. Conventional manual defect detection techniques 
take a lot of time, are prone to mistakes, and might not be able to handle the complexity and size of 
contemporary software systems. The software industry now has new tools to improve overall software 
quality and automate the defect identification process thanks to the development of machine learning 
techniques. In order to identify errors in software development, this study compares supervised versus 
unsupervised machine learning techniques. We compare the effectiveness of both methods with real-
world software defect datasets and talk about their advantages, disadvantages, and applications. The 
study's findings provide insight into how effective each method is at identifying mistakes while software is 
being produced. 
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Introduction 

 Software errors can have serious repercussions, such as system breakdowns, security lapses, 
and monetary losses. Ensuring the high quality of software products requires the detection of errors 
during the software development process. Conventional manual defect detection techniques take a lot of 
time and are prone to mistakes. With the advent of machine learning techniques, the software industry 
now has new tools at its disposal to automate defect identification procedures. In order to identify errors 
in software development, we compare supervised and unsupervised machine learning approaches in this 
work. This study examines the body of research on machine learning-based software development defect 
identification. We investigate several supervised learning algorithms that need labeled data for training, 
like Support Vector Machines (SVM), Random Forest, and Neural Networks. We also look into 
unsupervised learning methods that can detect abnormalities or fault clusters without explicit fault labels, 
such as K-means clustering, DBSCAN, and Isolation Forest. Our goal in contrasting these two methods 
is to offer important perspectives on how well they work in various software development scenarios. The 
studies' outcomes highlight the benefits and drawbacks of supervised and unsupervised learning 
strategies for fault identification. Because supervised learning algorithms employ labeled training data, 
they are more accurate and can clearly identify failure instances. On the other hand, obtaining labeled 
fault data can be costly and time-consuming—particularly for extensive projects. Unsupervised learning 
techniques, on the other hand, are more scalable and economical for fault detection since they do not 
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require labeled data. They could, however, have trouble telling apart various defect kinds and result in 
false positives or false negatives. The selection of proper hyper parameters is critical to the effectiveness 
of clustering algorithms, but it can be difficult in practice. 

Literature Review 

A practical evaluation to comprehend software quality and ensure corrective measures is 
presented in this study [1]. By employing these data mining techniques to create software defect 
prediction models, the product's quality is improved. This study offered multiple strategies for 
classification and clustering to forecast software problems. Methods of classification and clustering have 
been studied to predict software faults. The efficacy of J48, Random Forest, and Naive Bayesian 
Classifier (NBC), three data mining classifier methods, is evaluated based on several metrics such as 
ROC, Precision, MAE, RAE, and others. The clustering technique is then applied to the data set using K-
means, Hierarchical Clustering, and the Make Density Based Clustering algorithm. Time Taken, Cluster 
Instance, Number of Iterations, Incorrectly Clustered Instance, Log Likelihood, and other parameters are 
taken into consideration when evaluating the clustering results. Defect prediction is the end result of a 
detailed examination of ten real-time NASA software project defect databases, numerous applications 
run on them, and so on. 

The authors of this work [2] incorporated those variables, carried out the required analysis, and 
provided examples of the numerous challenges in the SFP field. They also assessed the efficacy of 
machine learning and statistical techniques based on SFP models. The analysis and practical research 
demonstrate that machine learning approaches outperform conventional statistical models in determining 
whether a class or module is fault- or non-fault-prone. When it comes to fault susceptibility, machine 
learning-based SFP techniques perform better than conventional statistical methods. The survey's real 
data indicates that machine learning techniques have the ability to detect fault tendency and yield 
findings that are broadly applicable. Additionally, they investigated a few problems related to the fault 
prediction discipline, including the problem of class imbalance and over-fitting of models and data quality. 

The research tool for using an unsupervised learning technique for software failure prediction is 
presented in the paper [3]. The evaluation of the clustering algorithm's efficacy is the primary goal. The 
author also assessed the confusion matrix and clustering algorithm's potential. The software's defect 
status is determined by computing the FPR, FNR, and ERROR faults using a confusion matrix.  

In this work, [4] published study outcomes and explained the SFP technique for five eclipse 
project datasets and nine object-oriented project datasets. They used Sensitivity, Specificity, AUC, and 
Accuracy to evaluate the performance of the suggested approaches. To investigate the approach's 
financial viability, a cost-benefit analysis was also conducted. According to the results, the method that 
was given was able to predict software flaws with the greatest accuracy (0.816%), AUC (0.835%), 
sensitivity (0.998%), and specificity (0.903%) of any method. A cost-benefit analysis suggested that the 
plan could lower the price of software testing. 

Methodology 

Supervised Learning Approach 

We separate the dataset into training and testing sets in order to use the supervised learning 
approach. The selected supervised learning algorithms, such as SVM, Random Forest, and Neural 
Networks, are trained using the training set. We assess each model's performance using metrics like 
accuracy, precision, recall, and F1-score once it has been trained.  

• Because Support Vector Machines (SVM) can effectively handle both binary and multiclass 
classification problems, they have been widely employed in software failure prediction. SVM is 
an algorithm for supervised learning that looks for the best hyper plane in the feature space to 
maximize the margin between classes [9]. SVM can efficiently distinguish between faulty and 
non-faulty occurrences in the context of software fault prediction by learning from previous fault 
data.  

• A well-liked machine learning algorithm called Random Forest has been effectively used for 
software defect prediction tasks. It is an ensemble learning technique that generates a more 
reliable and accurate outcome by combining the predictions of several decision trees [10]. 
Random Forest is a favored option for both researchers and practitioners in the software defect 
prediction domain due to its numerous benefits.  

• Deep Learning models, or neural networks, have demonstrated great promise and efficacy in a 
number of domains, including the prediction of software defects. Strong machine learning 
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techniques called neural networks are modeled after the composition and operation of the 
human brain [11]. Their ability to discern detailed patterns from data makes them ideal for tasks 
involving the prediction of software failures, since the correlation between software metrics and 
faults may be complex.  

Unsupervised Learning Approach 

The unsupervised learning method employs the identical dataset, excluding any explicit fault annotations. 
To find possible defect clusters or abnormalities in the data, we use K-means clustering, DBSCAN, and 
Isolation Forest [6]. When ground truth is known, clustering accuracy, silhouette score, and visual 
examination of the clustering results are used as evaluation measures for unsupervised learning. 

• Software defect prediction is one area in which K-means clustering, an unsupervised machine 
learning technique, has been used. In contrast to supervised learning algorithms, K-means can 
recognize patterns and classify related occurrences based only on the features of the data; it 
does not require labeled fault data. K-means clustering is used in software fault prediction to find 
possible clusters of defective instances. These clusters can then be examined further to find 
abnormalities or to understand areas of the program code that are prone to faults [12].  

• Software defect prediction has also made use of another unsupervised machine learning 
technique called DBSCAN (Density-Based Spatial Clustering of Applications with Noise). When 
it comes to spotting data point clusters in high-density areas and differentiating outliers in low-
density areas, DBSCAN is especially helpful. It is useful for identifying intricate patterns in 
software failure data since it does not require predetermined clusters and can handle datasets 
with different densities [13].  

• A unique anomaly detection technique called Isolation Forest can be used for jobs predicting 
software faults. By iteratively splitting the data points until the anomalies are isolated from the 
rest of the dataset, an ensemble method based on trees separates anomalies. Isolation Forest 
is useful for finding errors in software development since it is good at spotting uncommon and 
abnormal occurrences, which has made it popular in a variety of fields [14]. 

Table 1: Comparison of Machine Learning Techniques  

Technique Strengths Considerations 

Support 
Vector 
Machine 
 

SVM has strong generalization skills and 
can handle both linear and non-linear data 
separation. When labeled fault data is 
provided, it performs well in binary and 
multiclass classification problems. 

A significant amount of labeled data 
may be needed for SVM to train and 
adjust parameters effectively. For big 
datasets, it might not be as effective as 
other methods. 

Random 
Forest 
 

One ensemble technique that can handle 
high-dimensional data and is less prone to 
over fitting is Random Forest. It has good 
performance in binary and multiclass 
classification problems and can give 
information about the relevance of features. 

For best results, adjust the number of 
trees and other hyper parameters; 
otherwise, it might not be as 
interpretable as some other methods. 

Neural 
Networks 

Deep Learning methods, such as Neural 
Networks, are appropriate for high-
dimensional and nonlinear interactions 
because they can automatically extract 
complicated patterns from data. They do 
exceptionally well on tasks with a lot of 
labeled data. 

To operate at their best, neural 
networks may need a lot of processing 
power and a lot of training data. They 
might also be harder to understand 
than models that are simpler. 

K-means 
Clustering 

K-means is helpful for examining trends and 
perhaps troublesome areas because it may 
cluster data according to similarities. It is 
simple to use and effective. 

Labeled fault data is not used in the 
prediction process of K-means because 
it is an unsupervised technique. It might 
have trouble handling intricate and 
asymmetrical groupings. 

DBSCAN DBSCAN can handle clusters of different 
sizes and forms and is quite good at spotting 
outliers. It works well in fault prediction jobs 
to find anomalies and outliers. 

Predefined clusters are not necessary 
with DBSCAN; nevertheless, parameter 
selection can be difficult, and it might not 
work well with high-dimensional data. 
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Isolation 
Forest 

Isolation Forest can effectively handle high-
dimensional data and is specifically made 
for anomaly detection. It works well for 
locating uncommon and unusual fault 
occurrences.  

Parameter tuning is crucial for best 
performance, much like DBSCAN, and 
it may have trouble in dense clusters 
with a high number of normal 
instances. 

 

Results 

 We showcase the comparative outcomes of the supervised and unsupervised learning 
methodologies for software development fault identification. The performance indicators derived from the 
assessment of every technique served as the foundation for these findings. 

Supervised Learning Results 

The supervised learning algorithms achieved the following performance metrics on the test set: 

Table 2 

Algorithm Accuracy Precision Recall F1-Score 

Support Vector Machines (SVM) 0.85 0.81 0.87 0.84 

Neural Network 0.90 0.88 0.92 0.90 

Random Forests 0.88 0.84 0.90 0.87 
 

These metrics suggest that, for the particular software defect prediction task on the provided 
test set, the Neural Networks model performs the best.  

Unsupervised Learning Results 

The unsupervised learning techniques yielded the following results: 

• K-means Clustering: 76% clustering accuracy, 0.72 silhouette score Silhouette Score: The 
degree of separation between the clusters is indicated by the silhouette score. With a higher 
score indicating more distinct and well-separated clusters, the score goes from -1 to 1. A 
silhouette score of 0.72 indicates that K-means clusters are reasonably distinct and well-
separated. 
Clustering Accuracy: When ground truth labels are provided but not used in the clustering 
process, clustering accuracy is a statistic that can be applied. It gauges how well the genuine 
labels match the clustering result. 76% of the data points are appropriately assigned to the 
clusters according to their true labels, according to a clustering accuracy of 76%.  

• DBSCAN: Clustering accuracy 72%, silhouette score 0.58  

Silhouette Score: This metric assesses how distinct and well-aligned the clusters are. Better-
defined clusters are indicated by higher scores, which range from -1 to 1. With a 0.58 Silhouette 
score, the clusters created by DBSCAN appear to be somewhat separated, albeit possibly not 
as much as those produced by K-means (which obtained a 0.72 Silhouette score). 
As previously indicated, clustering accuracy is a statistic that is applied when genuine labels are 
available but not utilized in the clustering procedure. 72% of the data points are accurately 
assigned to the clusters based on their genuine labels, according to the clustering accuracy of 
72%.  

• Isolation Forest: Anomaly detection accuracy 81%  

An unsupervised anomaly detection technique called Isolation Forest finds outliers or 
abnormalities in a dataset. Measuring the effectiveness of the Isolation Forest model in identifying 
anomalies in comparison to the ground truth (if available) is called anomaly detection accuracy.   

Accurate Anomaly Detection: The ratio of correctly identified anomalies to all anomalies in the 
dataset is known as the anomaly detection accuracy. The Isolation Forest in this instance had an 81% 
anomaly detection accuracy. This indicates that the Isolation Forest model properly identified 81% of the 
abnormalities found in the dataset. 

Discussion 

 The findings show that there are advantages and disadvantages to both supervised and 
unsupervised machine learning approaches for fault identification in high-quality software development. 
Because supervised learning methods use labeled training data, they can identify error situations with 
more clarity and precision. On the other hand, acquiring labeled fault data can be expensive and time-
consuming, particularly for extensive projects. Although unsupervised learning techniques don't need 
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labeled data, they may have trouble differentiating between various defect kinds and result in false 
positives or false negatives. Furthermore, the performance of the clustering algorithms is highly 
dependent on the choice of suitable hyper parameters. We can make the following deductions based on 
the performance metrics that various software failure prediction algorithms achieve: 

 The best overall performance was obtained by neural networks, which had 90% accuracy, 88% 
precision, 92% recall, and 90% F1-score. It was the most efficient method among the three supervised 
learning algorithms for this particular software defect prediction job, outperforming Random Forest and 
SVM in every metric. With an accuracy of 88%, precision of 84%, recall of 90%, and F1-score of 87%, 
Random Forest showed impressive performance. Its strong performance in precision and recall makes it 
a reliable option for software defect prediction, particularly in the case of high-dimensional and intricate 
feature spaces. With an accuracy of 85%, precision of 81%, recall of 87%, and F1-score of 84%, SVM 
demonstrated strong performance. SVM is a trustworthy option, however in this specific situation, it 
performed marginally worse than Random Forest and Neural Networks. Unsupervised methods such as 
K-means clustering, DBSCAN, and isolation forest have shed light on the anomaly detection and 
clustering components of software failure prediction. With a Silhouette score of 0.72, K-means was able 
to show clusters that were reasonably well separated. A degree of separation was suggested by 
DBSCAN's Silhouette score of 0.58, while Isolation Forest's anomaly detection accuracy was 81%. When 
all the results were taken into account, the models Neural Networks, Random Forest, and SVM 
performed better in this dataset when it came to predicting software faults.  

Conclusion and Future Work 

In order to discover errors in software development, supervised and unsupervised machine 
learning algorithms are compared in this study report. Supervised learning can be limited in certain 
situations since it requires labeled data, even though it demonstrates improved error identification and 
accuracy. Despite being label-free, unsupervised learning might not be as precise and might have trouble 
with intricate software defect patterns. Depending on the particular needs and limitations of the software 
development project, supervised or unsupervised learning may be used. Combining the advantages of 
both approaches into a hybrid strategy could improve fault detection efficiency. To better understand 
hybrid approaches and increase the precision of defect detection in software development, more 
investigation and testing are required. This study advances knowledge on the applicability of each 
method for finding errors in software development, assisting practitioners in making wise choices that will 
result in the production of high-caliber software. To stay up with the rapidly changing software 
development landscape, more investigation and testing are required to examine hybrid approaches and 
improve fault detection methods. To obtain a thorough knowledge of each technique's generalization and 
performance across many contexts, future study should include additional analysis, cross-validation, and 
consideration of new assessment measures.   
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