
International Journal of Global Research Innovations & Technology (IJGRIT) 84
ISSN : 2583-8717, Impact Factor: 6.382, Volume 02, No. 01, January-March, 2024, pp 84-89

SUPERVISED AND UNSUPERVISED MACHINE LEARNING TECHNIQUES TO
PREDICT FAULT IN DEVELOPING QUALITY SOFTWARE:

A COMPARATIVE STUDY

 Nikita Gupta

Prof. (Dr.) Ripu Ranjan Sinha**

ABSTRACT

Finding bugs in software development is essential to guaranteeing the creation of high-caliber
software. Using machine learning approaches has yielded encouraging results in automating defect
identification. Since early problem detection reduces the time and cost required for bug patching and
maintenance, it is essential for software development. Conventional manual defect detection techniques
take a lot of time, are prone to mistakes, and might not be able to handle the complexity and size of
contemporary software systems. The software industry now has new tools to improve overall software
quality and automate the defect identification process thanks to the development of machine learning
techniques. In order to identify errors in software development, this study compares supervised versus
unsupervised machine learning techniques. We compare the effectiveness of both methods with real-
world software defect datasets and talk about their advantages, disadvantages, and applications. The
study's findings provide insight into how effective each method is at identifying mistakes while software is
being produced.

Keywords: Software Fault Detection, Deep Learning, Machine Learning, Software Quality Assurance.

Introduction

 Software errors can have serious repercussions, such as system breakdowns, security lapses,
and monetary losses. Ensuring the high quality of software products requires the detection of errors
during the software development process. Conventional manual defect detection techniques take a lot of
time and are prone to mistakes. With the advent of machine learning techniques, the software industry
now has new tools at its disposal to automate defect identification procedures. In order to identify errors
in software development, we compare supervised and unsupervised machine learning approaches in this
work. This study examines the body of research on machine learning-based software development defect
identification. We investigate several supervised learning algorithms that need labeled data for training,
like Support Vector Machines (SVM), Random Forest, and Neural Networks. We also look into
unsupervised learning methods that can detect abnormalities or fault clusters without explicit fault labels,
such as K-means clustering, DBSCAN, and Isolation Forest. Our goal in contrasting these two methods
is to offer important perspectives on how well they work in various software development scenarios. The
studies' outcomes highlight the benefits and drawbacks of supervised and unsupervised learning
strategies for fault identification. Because supervised learning algorithms employ labeled training data,
they are more accurate and can clearly identify failure instances. On the other hand, obtaining labeled
fault data can be costly and time-consuming—particularly for extensive projects. Unsupervised learning
techniques, on the other hand, are more scalable and economical for fault detection since they do not

 Research Scholar, Rajasthan Technical University, Kota, Rajasthan, India.
** Professor, S.S. Jain Subodh P.G. College, Rajasthan Technical University, Kota, Rajasthan, India.

Nikita Gupta & Prof. (Dr.) Ripu Ranjan Sinha: Supervised and Unsupervised Machine Learning..... 85

require labeled data. They could, however, have trouble telling apart various defect kinds and result in
false positives or false negatives. The selection of proper hyper parameters is critical to the effectiveness
of clustering algorithms, but it can be difficult in practice.

Literature Review

A practical evaluation to comprehend software quality and ensure corrective measures is
presented in this study [1]. By employing these data mining techniques to create software defect
prediction models, the product's quality is improved. This study offered multiple strategies for
classification and clustering to forecast software problems. Methods of classification and clustering have
been studied to predict software faults. The efficacy of J48, Random Forest, and Naive Bayesian
Classifier (NBC), three data mining classifier methods, is evaluated based on several metrics such as
ROC, Precision, MAE, RAE, and others. The clustering technique is then applied to the data set using K-
means, Hierarchical Clustering, and the Make Density Based Clustering algorithm. Time Taken, Cluster
Instance, Number of Iterations, Incorrectly Clustered Instance, Log Likelihood, and other parameters are
taken into consideration when evaluating the clustering results. Defect prediction is the end result of a
detailed examination of ten real-time NASA software project defect databases, numerous applications
run on them, and so on.

The authors of this work [2] incorporated those variables, carried out the required analysis, and
provided examples of the numerous challenges in the SFP field. They also assessed the efficacy of
machine learning and statistical techniques based on SFP models. The analysis and practical research
demonstrate that machine learning approaches outperform conventional statistical models in determining
whether a class or module is fault- or non-fault-prone. When it comes to fault susceptibility, machine
learning-based SFP techniques perform better than conventional statistical methods. The survey's real
data indicates that machine learning techniques have the ability to detect fault tendency and yield
findings that are broadly applicable. Additionally, they investigated a few problems related to the fault
prediction discipline, including the problem of class imbalance and over-fitting of models and data quality.

The research tool for using an unsupervised learning technique for software failure prediction is
presented in the paper [3]. The evaluation of the clustering algorithm's efficacy is the primary goal. The
author also assessed the confusion matrix and clustering algorithm's potential. The software's defect
status is determined by computing the FPR, FNR, and ERROR faults using a confusion matrix.

In this work, [4] published study outcomes and explained the SFP technique for five eclipse
project datasets and nine object-oriented project datasets. They used Sensitivity, Specificity, AUC, and
Accuracy to evaluate the performance of the suggested approaches. To investigate the approach's
financial viability, a cost-benefit analysis was also conducted. According to the results, the method that
was given was able to predict software flaws with the greatest accuracy (0.816%), AUC (0.835%),
sensitivity (0.998%), and specificity (0.903%) of any method. A cost-benefit analysis suggested that the
plan could lower the price of software testing.

Methodology

Supervised Learning Approach

We separate the dataset into training and testing sets in order to use the supervised learning
approach. The selected supervised learning algorithms, such as SVM, Random Forest, and Neural
Networks, are trained using the training set. We assess each model's performance using metrics like
accuracy, precision, recall, and F1-score once it has been trained.

• Because Support Vector Machines (SVM) can effectively handle both binary and multiclass
classification problems, they have been widely employed in software failure prediction. SVM is
an algorithm for supervised learning that looks for the best hyper plane in the feature space to
maximize the margin between classes [9]. SVM can efficiently distinguish between faulty and
non-faulty occurrences in the context of software fault prediction by learning from previous fault
data.

• A well-liked machine learning algorithm called Random Forest has been effectively used for
software defect prediction tasks. It is an ensemble learning technique that generates a more
reliable and accurate outcome by combining the predictions of several decision trees [10].
Random Forest is a favored option for both researchers and practitioners in the software defect
prediction domain due to its numerous benefits.

• Deep Learning models, or neural networks, have demonstrated great promise and efficacy in a
number of domains, including the prediction of software defects. Strong machine learning

86 International Journal of Global Research Innovations & Technology (IJGRIT), January-March, 2024

techniques called neural networks are modeled after the composition and operation of the
human brain [11]. Their ability to discern detailed patterns from data makes them ideal for tasks
involving the prediction of software failures, since the correlation between software metrics and
faults may be complex.

Unsupervised Learning Approach

The unsupervised learning method employs the identical dataset, excluding any explicit fault annotations.
To find possible defect clusters or abnormalities in the data, we use K-means clustering, DBSCAN, and
Isolation Forest [6]. When ground truth is known, clustering accuracy, silhouette score, and visual
examination of the clustering results are used as evaluation measures for unsupervised learning.

• Software defect prediction is one area in which K-means clustering, an unsupervised machine
learning technique, has been used. In contrast to supervised learning algorithms, K-means can
recognize patterns and classify related occurrences based only on the features of the data; it
does not require labeled fault data. K-means clustering is used in software fault prediction to find
possible clusters of defective instances. These clusters can then be examined further to find
abnormalities or to understand areas of the program code that are prone to faults [12].

• Software defect prediction has also made use of another unsupervised machine learning
technique called DBSCAN (Density-Based Spatial Clustering of Applications with Noise). When
it comes to spotting data point clusters in high-density areas and differentiating outliers in low-
density areas, DBSCAN is especially helpful. It is useful for identifying intricate patterns in
software failure data since it does not require predetermined clusters and can handle datasets
with different densities [13].

• A unique anomaly detection technique called Isolation Forest can be used for jobs predicting
software faults. By iteratively splitting the data points until the anomalies are isolated from the
rest of the dataset, an ensemble method based on trees separates anomalies. Isolation Forest
is useful for finding errors in software development since it is good at spotting uncommon and
abnormal occurrences, which has made it popular in a variety of fields [14].

Table 1: Comparison of Machine Learning Techniques

Technique Strengths Considerations

Support
Vector
Machine

SVM has strong generalization skills and
can handle both linear and non-linear data
separation. When labeled fault data is
provided, it performs well in binary and
multiclass classification problems.

A significant amount of labeled data
may be needed for SVM to train and
adjust parameters effectively. For big
datasets, it might not be as effective as
other methods.

Random
Forest

One ensemble technique that can handle
high-dimensional data and is less prone to
over fitting is Random Forest. It has good
performance in binary and multiclass
classification problems and can give
information about the relevance of features.

For best results, adjust the number of
trees and other hyper parameters;
otherwise, it might not be as
interpretable as some other methods.

Neural
Networks

Deep Learning methods, such as Neural
Networks, are appropriate for high-
dimensional and nonlinear interactions
because they can automatically extract
complicated patterns from data. They do
exceptionally well on tasks with a lot of
labeled data.

To operate at their best, neural
networks may need a lot of processing
power and a lot of training data. They
might also be harder to understand
than models that are simpler.

K-means
Clustering

K-means is helpful for examining trends and
perhaps troublesome areas because it may
cluster data according to similarities. It is
simple to use and effective.

Labeled fault data is not used in the
prediction process of K-means because
it is an unsupervised technique. It might
have trouble handling intricate and
asymmetrical groupings.

DBSCAN DBSCAN can handle clusters of different
sizes and forms and is quite good at spotting
outliers. It works well in fault prediction jobs
to find anomalies and outliers.

Predefined clusters are not necessary
with DBSCAN; nevertheless, parameter
selection can be difficult, and it might not
work well with high-dimensional data.

Nikita Gupta & Prof. (Dr.) Ripu Ranjan Sinha: Supervised and Unsupervised Machine Learning..... 87

Isolation
Forest

Isolation Forest can effectively handle high-
dimensional data and is specifically made
for anomaly detection. It works well for
locating uncommon and unusual fault
occurrences.

Parameter tuning is crucial for best
performance, much like DBSCAN, and
it may have trouble in dense clusters
with a high number of normal
instances.

Results

 We showcase the comparative outcomes of the supervised and unsupervised learning
methodologies for software development fault identification. The performance indicators derived from the
assessment of every technique served as the foundation for these findings.

Supervised Learning Results

The supervised learning algorithms achieved the following performance metrics on the test set:

Table 2

Algorithm Accuracy Precision Recall F1-Score

Support Vector Machines (SVM) 0.85 0.81 0.87 0.84

Neural Network 0.90 0.88 0.92 0.90

Random Forests 0.88 0.84 0.90 0.87

These metrics suggest that, for the particular software defect prediction task on the provided
test set, the Neural Networks model performs the best.

Unsupervised Learning Results

The unsupervised learning techniques yielded the following results:

• K-means Clustering: 76% clustering accuracy, 0.72 silhouette score Silhouette Score: The
degree of separation between the clusters is indicated by the silhouette score. With a higher
score indicating more distinct and well-separated clusters, the score goes from -1 to 1. A
silhouette score of 0.72 indicates that K-means clusters are reasonably distinct and well-
separated.
Clustering Accuracy: When ground truth labels are provided but not used in the clustering
process, clustering accuracy is a statistic that can be applied. It gauges how well the genuine
labels match the clustering result. 76% of the data points are appropriately assigned to the
clusters according to their true labels, according to a clustering accuracy of 76%.

• DBSCAN: Clustering accuracy 72%, silhouette score 0.58

Silhouette Score: This metric assesses how distinct and well-aligned the clusters are. Better-
defined clusters are indicated by higher scores, which range from -1 to 1. With a 0.58 Silhouette
score, the clusters created by DBSCAN appear to be somewhat separated, albeit possibly not
as much as those produced by K-means (which obtained a 0.72 Silhouette score).
As previously indicated, clustering accuracy is a statistic that is applied when genuine labels are
available but not utilized in the clustering procedure. 72% of the data points are accurately
assigned to the clusters based on their genuine labels, according to the clustering accuracy of
72%.

• Isolation Forest: Anomaly detection accuracy 81%

An unsupervised anomaly detection technique called Isolation Forest finds outliers or
abnormalities in a dataset. Measuring the effectiveness of the Isolation Forest model in identifying
anomalies in comparison to the ground truth (if available) is called anomaly detection accuracy.

Accurate Anomaly Detection: The ratio of correctly identified anomalies to all anomalies in the
dataset is known as the anomaly detection accuracy. The Isolation Forest in this instance had an 81%
anomaly detection accuracy. This indicates that the Isolation Forest model properly identified 81% of the
abnormalities found in the dataset.

Discussion

 The findings show that there are advantages and disadvantages to both supervised and
unsupervised machine learning approaches for fault identification in high-quality software development.
Because supervised learning methods use labeled training data, they can identify error situations with
more clarity and precision. On the other hand, acquiring labeled fault data can be expensive and time-
consuming, particularly for extensive projects. Although unsupervised learning techniques don't need

88 International Journal of Global Research Innovations & Technology (IJGRIT), January-March, 2024

labeled data, they may have trouble differentiating between various defect kinds and result in false
positives or false negatives. Furthermore, the performance of the clustering algorithms is highly
dependent on the choice of suitable hyper parameters. We can make the following deductions based on
the performance metrics that various software failure prediction algorithms achieve:

 The best overall performance was obtained by neural networks, which had 90% accuracy, 88%
precision, 92% recall, and 90% F1-score. It was the most efficient method among the three supervised
learning algorithms for this particular software defect prediction job, outperforming Random Forest and
SVM in every metric. With an accuracy of 88%, precision of 84%, recall of 90%, and F1-score of 87%,
Random Forest showed impressive performance. Its strong performance in precision and recall makes it
a reliable option for software defect prediction, particularly in the case of high-dimensional and intricate
feature spaces. With an accuracy of 85%, precision of 81%, recall of 87%, and F1-score of 84%, SVM
demonstrated strong performance. SVM is a trustworthy option, however in this specific situation, it
performed marginally worse than Random Forest and Neural Networks. Unsupervised methods such as
K-means clustering, DBSCAN, and isolation forest have shed light on the anomaly detection and
clustering components of software failure prediction. With a Silhouette score of 0.72, K-means was able
to show clusters that were reasonably well separated. A degree of separation was suggested by
DBSCAN's Silhouette score of 0.58, while Isolation Forest's anomaly detection accuracy was 81%. When
all the results were taken into account, the models Neural Networks, Random Forest, and SVM
performed better in this dataset when it came to predicting software faults.

Conclusion and Future Work

In order to discover errors in software development, supervised and unsupervised machine
learning algorithms are compared in this study report. Supervised learning can be limited in certain
situations since it requires labeled data, even though it demonstrates improved error identification and
accuracy. Despite being label-free, unsupervised learning might not be as precise and might have trouble
with intricate software defect patterns. Depending on the particular needs and limitations of the software
development project, supervised or unsupervised learning may be used. Combining the advantages of
both approaches into a hybrid strategy could improve fault detection efficiency. To better understand
hybrid approaches and increase the precision of defect detection in software development, more
investigation and testing are required. This study advances knowledge on the applicability of each
method for finding errors in software development, assisting practitioners in making wise choices that will
result in the production of high-caliber software. To stay up with the rapidly changing software
development landscape, more investigation and testing are required to examine hybrid approaches and
improve fault detection methods. To obtain a thorough knowledge of each technique's generalization and
performance across many contexts, future study should include additional analysis, cross-validation, and
consideration of new assessment measures.

References

1. Dhall, Shafali & Chug, Anuradha. (2013). Software Defect Prediction Using Supervised Learning
Algorithm and Unsupervised Learning Algorithm. IET Conference Publications. 2013. 5.01-5.01.
10.1049/cp.2013.2313.

2. Pandey, S. K., Mishra, R. B., & Tripathi, A. K. (2021). Machine learning based methods for
software fault prediction: A survey. Expert Systems with Applications, 172, 114595.

3. Rashid, E. (2016). Software Fault Prediction Using Unsupervised Learning Technique: A
Practical Approach. International Journal of u-and e-Service, Science and Technology, 9(11),
275-288.

4. Rathore, S. S., & Kumar, S.: Software fault prediction based on the dynamic selection of
learning technique: findings from the eclipse project study. Applied Intelligence (2021).
https://doi.org/10.1007/s10489-021-02346-x

5. S. A. K, V. Gururaj, K. R. Umadi, M. Kumar, S. P. Shankar and D. Varadam, "Comprehensive
Survey of different Machine Learning Algorithms used for Software Defect Prediction," 2022
International Conference on Decision Aid Sciences and Applications (DASA), Chiangrai,
Thailand, 2022, pp. 425-430, doi: 10.1109/DASA54658.2022.9764982.

6. Zhou, Y., & Leung, H.: Empirical analysis of object-oriented design metrics for predicting high
and low severity faults. IEEE Transactions on Software Engineering (2006).
https://doi.org/10.1109/TSE.2006.102

https://doi.org/10.1109/TSE.2006.102

Nikita Gupta & Prof. (Dr.) Ripu Ranjan Sinha: Supervised and Unsupervised Machine Learning..... 89

7. Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A. E., & Arshad, H.: State-
of-the-art in artificial neural network applications: A survey. In Heliyon (2018).
https://doi.org/10.1016/j.heliyon.2018.e00938

8. Zhang, N., Wu, L., Yang, J., & Guan, Y.: Naive bayes bearing fault diagnosis based on
enhanced independence of data. Sensors (Switzerland) (2018).
https://doi.org/10.3390/s18020463

9. Wang, J., & Zhang, C.: Software reliability prediction using a deep learning model based on the
RNN encoder–decoder. Reliability Engineering and System Safety (2018).
https://doi.org/10.1016/j.ress.2017.10.019

10. Dam, H. K., Pham, T., Ng, S. W., Tran, T., Grundy, J., Ghose, A., Kim, T., & Kim, C. J.: Lessons
learned from using a deep tree-based model for software defect prediction in practice. IEEE
International Working Conference on Mining Software Repositories (2019).
https://doi.org/10.1109/MSR.2019.00017

11. C. A. Escobar and R. Morales-Menendez, “Machine Learning Techniques For Quality Control In
High Conformance Manufacturing Environment,” Advances in Mechanical Engineering, vol. 10,
no. 2, p. 168781401875551, 2018.

12. S. Masuda, K. Ono, T. Yasue, and N. Hosokawa, “A Survey of Software Quality for Machine
Learning Applications,” 2018 IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), 2018.

13. K. Chandra, G. Kapoor, R. Kohli, and A. Gupta, “Improving Software Quality Using Machine
Learning,” 2016 International Conference on Innovation and Challenges in Cyber Security
(ICICCS-INBUSH), 2016.

14. E. A. Rashid, R. B. Patnaik, and V. C. Bhattacherjee, “Machine Learning and Software Quality
Prediction: As an Expert System,” International Journal of Information Engineering and
Electronic Business, vol. 6, no. 2, pp. 9–27, Aug. 2014.

https://doi.org/10.1016/j.heliyon.2018.e00938
https://doi.org/10.3390/s18020463
https://doi.org/10.1016/j.ress.2017.10.019
https://doi.org/10.1109/MSR.2019.00017

